論文の概要: Simplicial complexes in network intrusion profiling
- arxiv url: http://arxiv.org/abs/2408.09788v1
- Date: Mon, 19 Aug 2024 08:29:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:04:37.441978
- Title: Simplicial complexes in network intrusion profiling
- Title(参考訳): ネットワーク侵入プロファイリングにおける単純錯体
- Authors: Mandala von Westenholz, Martin Atzmueller, Tim Römer,
- Abstract要約: 我々は、個々のIPアドレスとその接続を参照するデータポイントについて検討する。
私たちはこれらのデータポイントに関連するネットワークを構築し、攻撃されたデータポイントがネットワークの構造の一部であるキープロパティを構築します。
そこで本研究では, 単体錯体を用いて, 所望のネットワークと各侵入を, 単体特性の観点からモデル化する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0937465283958018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For studying intrusion detection data we consider data points referring to individual IP addresses and their connections: We build networks associated with those data points, such that vertices in a graph are associated via the respective IP addresses, with the key property that attacked data points are part of the structure of the network. More precisely, we propose a novel approach using simplicial complexes to model the desired network and the respective intrusions in terms of simplicial attributes thus generalizing previous graph-based approaches. Adapted network centrality measures related to simplicial complexes yield so-called patterns associated to vertices, which themselves contain a set of features. These are then used to describe the attacked or the attacker vertices, respectively. Comparing this new strategy with classical concepts demonstrates the advantages of the presented approach using simplicial features for detecting and characterizing intrusions.
- Abstract(参考訳): 我々は、各IPアドレスを介してグラフ内の頂点が関連付けられているような、それらのデータポイントに関連するネットワークを構築し、攻撃されたデータポイントがネットワーク構造の一部であるキープロパティを構築します。
より正確には、simplicial Complex を用いて、所望のネットワークと各侵入をsimplicial attribute の観点からモデル化し、従来のグラフベースのアプローチを一般化する新しいアプローチを提案する。
単体錯体に関連する適応型ネットワーク集中度尺度は、頂点に関連するいわゆるパターンを生じさせ、それら自身は一連の特徴を含む。
これらは、それぞれ攻撃されたか攻撃した頂点を記述するために使用される。
この新たな戦略を古典的概念と比較すると、侵入を検知・特徴づけするための単純な特徴を用いた提案手法の利点が示される。
関連論文リスト
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
分散ディープラーニングのためのグラフベースパーソナライズアルゴリズム(GATTA)を提案する。
特に、各エージェントのパーソナライズされたモデルは、グローバルな部分とノード固有の部分で構成される。
グラフ内の各エージェントを1つのノードとして扱うことにより、ノード固有のパラメータを特徴として扱うことにより、グラフアテンション機構の利点を継承することができる。
論文 参考訳(メタデータ) (2023-05-22T13:48:30Z) - BS-GAT Behavior Similarity Based Graph Attention Network for Network
Intrusion Detection [20.287285893803244]
本稿では,グラフアテンションネットワークを用いた行動類似性(BS-GAT)に基づくグラフニューラルネットワークアルゴリズムを提案する。
その結果,提案手法は有効であり,既存のソリューションと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-04-07T09:42:07Z) - Affinity-Aware Graph Networks [9.888383815189176]
グラフニューラルネットワーク(GNN)は、リレーショナルデータを学ぶための強力なテクニックとして登場した。
グラフニューラルネットワークの特徴としてアフィニティ尺度の利用について検討する。
本稿では,これらの特徴に基づくメッセージパッシングネットワークを提案し,その性能を様々なノードおよびグラフ特性予測タスクで評価する。
論文 参考訳(メタデータ) (2022-06-23T18:51:35Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
グラフ学習における最新の方向性として、SNN(Simplicial Neural Network)が最近登場した。
リンク予測のためのBlock Simplicial Complex Neural Networks (BScNets) モデルを提案する。
BScNetsは、コストを抑えながら最先端のモデルよりも大きなマージンを保っている。
論文 参考訳(メタデータ) (2021-12-13T17:35:54Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Mutually exciting point process graphs for modelling dynamic networks [0.0]
相互励起点過程グラフ(MEG)と呼ばれる動的ネットワークのための新しいモデルのクラスが提案される。
MEGは、Dyadicマーク付きポイントプロセスのためのスケーラブルなネットワークワイド統計モデルであり、異常検出に使用できる。
このモデルはシミュレーショングラフと実世界のコンピュータネットワークデータセット上でテストされ、優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-11T10:14:55Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Graph Fairing Convolutional Networks for Anomaly Detection [7.070726553564701]
半教師付き異常検出のためのスキップ接続付きグラフ畳み込みネットワークを提案する。
本モデルの有効性は,5つのベンチマークデータセットに対する広範な実験によって実証された。
論文 参考訳(メタデータ) (2020-10-20T13:45:47Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。