論文の概要: Private Means and the Curious Incident of the Free Lunch
- arxiv url: http://arxiv.org/abs/2408.10438v2
- Date: Wed, 21 Aug 2024 16:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 12:07:24.911144
- Title: Private Means and the Curious Incident of the Free Lunch
- Title(参考訳): 私的意味とフリーランチの悪事
- Authors: Jack Fitzsimons, James Honaker, Michael Shoemate, Vikrant Singhal,
- Abstract要約: DP実装の最もよく知られた基本的ビルディングブロックは、同一のプライバシー保証のために大幅にノイズを減らしてリリース可能であることを示す。
これを実現するために、最低ケース感度$R$の個々のデータを、すべてのデータが一定のノルム$R$を持つプレフィックスに投影する。
- 参考スコア(独自算出の注目度): 6.1319157811654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the most well-known and fundamental building blocks of DP implementations -- sum, mean, count (and many other linear queries) -- can be released with substantially reduced noise for the same privacy guarantee. We achieve this by projecting individual data with worst-case sensitivity $R$ onto a simplex where all data now has a constant norm $R$. In this simplex, additional ``free'' queries can be run that are already covered by the privacy-loss of the original budgeted query, and which algebraically give additional estimates of counts or sums, and can be combined for lower final noise.
- Abstract(参考訳): DP実装で最もよく知られ、基本的なビルディングブロックである、和、平均、カウント(および他の多くのリニアクエリ)が、同じプライバシー保証のために大幅にノイズを減らしてリリースできることを示します。
これを実現するために、最低ケース感度$R$の個々のデータを、すべてのデータが一定のノルム$R$を持つプレフィックスに投影する。
この単純な例では、'free' クエリを追加して実行することができ、これはもともとの予算化されたクエリのプライバシロスによって既にカバーされており、代数的に数値や和の見積もりを与え、最終的なノイズを下げるために組み合わせることができる。
関連論文リスト
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
差分プライバシーのための入力摂動フレームワークを再検討し、入力にノイズを付加する。
まず、ペアワイズ・コサイン類似性をプライベートにリリースするための新しい効率的なアルゴリズムを設計する。
我々は,$k$の辺縁クエリを$n$の機能に対して計算する新しいアルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-06-07T12:07:16Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
非プライベートなデータ依存前処理アルゴリズムによって生じる追加のプライバシーコストを評価するための一般的なフレームワークを提案する。
当社のフレームワークは,2つの新しい技術的概念を活用することにより,全体的なプライバシー保証の上限を確立する。
論文 参考訳(メタデータ) (2024-03-19T17:54:49Z) - Fixed-Budget Differentially Private Best Arm Identification [62.36929749450298]
差分プライバシー制約下における固定予算制度における線形包帯のベストアーム識別(BAI)について検討した。
誤差確率に基づいてミニマックス下限を導出し、下限と上限が指数関数的に$T$で崩壊することを示した。
論文 参考訳(メタデータ) (2024-01-17T09:23:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise [54.34628844260993]
微分プライベートな計算は、しばしば$d$次元統計学の感度に束縛されて始まる。
純粋な微分プライバシーのために、$K$-normメカニズムは統計学の感度空間に合わせた規範を用いてこのアプローチを改善することができる。
本稿では,総和,数,投票の単純な統計量について両問題を解く。
論文 参考訳(メタデータ) (2023-09-27T17:09:36Z) - Privacy Amplification via Shuffling: Unified, Simplified, and Tightened [20.10078781197001]
シングルメッセージとマルチメッセージのシャッフルプロトコルの両方において、プライバシーを増幅するための包括的なフレームワークを提案する。
我々の理論的な結果は、特に極端確率設計を持つ局所確率化器に対して、我々のフレームワークがより厳密な境界を提供することを示している。
私たちのバウンダリは、非常に効率的な$tildeO(n)$アルゴリズムで、$n=108$ユーザに対して10$秒未満で、数値的にプライバシを増幅します。
論文 参考訳(メタデータ) (2023-04-11T06:27:25Z) - Differential privacy for symmetric log-concave mechanisms [0.0]
データベースクエリ結果にランダムノイズを加えることは、プライバシを達成するための重要なツールである。
我々は、すべての対称および対数凹形ノイズ密度に対して、$(epsilon, delta)$-differential privacyに対して十分かつ必要な条件を提供する。
論文 参考訳(メタデータ) (2022-02-23T10:20:29Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - The Discrete Gaussian for Differential Privacy [26.179150185540514]
微分プライベートシステムを構築するための重要なツールは、機密データセットで評価された関数の出力にガウスノイズを追加することである。
これまでの研究は、一見無害な数値エラーがプライバシーを完全に破壊することを示した。
差分プライバシーの文脈において、離散ガウシアンを導入・分析する。
論文 参考訳(メタデータ) (2020-03-31T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。