論文の概要: Transfer Operator Learning with Fusion Frame
- arxiv url: http://arxiv.org/abs/2408.10458v1
- Date: Tue, 20 Aug 2024 00:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 17:33:21.587896
- Title: Transfer Operator Learning with Fusion Frame
- Title(参考訳): フュージョンフレームを用いたトランスファー演算子学習
- Authors: Haoyang Jiang, Yongzhi Qu,
- Abstract要約: 本研究は、部分微分方程式(PDE)を解くための演算子学習モデルの伝達学習能力を向上する新しいフレームワークを提案する。
我々は,融合フレームとPOD-DeepONetを組み合わせた革新的なアーキテクチャを導入し,実験解析において様々なPDEに対して優れた性能を示す。
我々のフレームワークは、オペレーターラーニングモデルにおけるトランスファーラーニングの重要な課題に対処し、幅広い科学的・工学的応用において適応的で効率的なソリューションの道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of applying learned knowledge from one domain to solve problems in another related but distinct domain, known as transfer learning, is fundamental in operator learning models that solve Partial Differential Equations (PDEs). These current models often struggle with generalization across different tasks and datasets, limiting their applicability in diverse scientific and engineering disciplines. This work presents a novel framework that enhances the transfer learning capabilities of operator learning models for solving Partial Differential Equations (PDEs) through the integration of fusion frame theory with the Proper Orthogonal Decomposition (POD)-enhanced Deep Operator Network (DeepONet). We introduce an innovative architecture that combines fusion frames with POD-DeepONet, demonstrating superior performance across various PDEs in our experimental analysis. Our framework addresses the critical challenge of transfer learning in operator learning models, paving the way for adaptable and efficient solutions across a wide range of scientific and engineering applications.
- Abstract(参考訳): あるドメインから学習知識を適用して別のドメインで問題を解決するという課題は、PDE(Partial Differential Equations)を解く演算子学習モデルにおいて基本的なものである。
これらの現在のモデルは、様々なタスクやデータセットをまたいだ一般化に苦しむことが多く、様々な科学や工学の分野における適用性を制限している。
本研究では,PDE(Partial Differential Equations)を解くための演算子学習モデルの伝達学習能力を向上させる新しいフレームワークについて,統合フレーム理論とPOD(Proper Orthogonal Decomposition)強化Deep Operator Network(DeepONet)の統合により提案する。
我々は,融合フレームとPOD-DeepONetを組み合わせた革新的なアーキテクチャを導入し,実験解析において様々なPDEに対して優れた性能を示す。
我々のフレームワークは、オペレーターラーニングモデルにおけるトランスファーラーニングの重要な課題に対処し、幅広い科学的・工学的応用において適応的で効率的なソリューションの道を開く。
関連論文リスト
- UniFIDES: Universal Fractional Integro-Differential Equation Solvers [0.0]
本研究はUniversal Fractional Integro-Differential Equation Solvers (UniFIDES)を紹介する。
UniFIDESは、前方方向と逆方向の両方で様々なFIDEを迅速に解くように設計された、包括的な機械学習プラットフォームである。
この結果から,UniFIDESは積分微分方程式の広い範囲を正確に解き,機械学習プラットフォームを普遍的に活用する可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-01T23:16:34Z) - MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
論文 参考訳(メタデータ) (2024-04-23T10:51:31Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
異種モデルのパラメータ空間のギャップを埋めることを学ぶMergeNetを提案する。
MergeNetの中核となるメカニズムはパラメータアダプタにあり、ソースモデルの低ランクパラメータをクエリすることで動作する。
MergeNetは両方のモデルと共に学習され、我々のフレームワークは、現在のステージに関する知識を動的に転送し、適応することができます。
論文 参考訳(メタデータ) (2024-04-20T08:34:39Z) - Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation [4.286691905364396]
本稿では,PROSE-PDEという科学問題に対するマルチモーダル基礎モデルを提案する。
本モデルは,物理系の制御方程式を並列に学習しながら,システムの将来の状態を予測できるマルチオペレータ学習手法である。
論文 参考訳(メタデータ) (2024-04-18T17:34:20Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
本稿では,科学計算の基礎モデルとしてNeural Combinatorial Wavelet Neural Operator (NCWNO) の概念を紹介する。
NCWNOは、物理学の様々なスペクトルから学習し、パラメトリック偏微分方程式(PDE)に関連する解作用素に継続的に適応するように特別に設計されている。
提案した基礎モデルには、2つの大きな利点がある: (i) 複数のパラメトリックPDEに対する解演算子を同時に学習し、 (ii) 極小調整の少ない新しいパラメトリックPDEに素早く一般化できる。
論文 参考訳(メタデータ) (2023-10-29T03:20:10Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
我々は、自己教師付き学習(SSL)のための共同埋め込み手法を実装することにより、PDEの汎用表現を学習する。
我々の表現は、PDEの係数の回帰などの不変タスクに対するベースラインアプローチよりも優れており、また、ニューラルソルバのタイムステッピング性能も向上している。
提案手法がPDEの汎用基盤モデルの開発に有効であることを期待する。
論文 参考訳(メタデータ) (2023-07-11T16:52:22Z) - GNOT: A General Neural Operator Transformer for Operator Learning [34.79481320566005]
一般ニューラル演算子変換器(GNOT)は、演算子を学習するためのスケーラブルで効果的なフレームワークである。
新規な異種正規化アテンション層を設計することにより、複数の入力関数や不規則メッシュを扱うのに非常に柔軟である。
トランスアーキテクチャの大規模なモデルキャパシティは、我々のモデルに大規模なデータセットと実用的な問題にスケールする可能性を与えてくれます。
論文 参考訳(メタデータ) (2023-02-28T07:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。