論文の概要: Operator Learning: A Statistical Perspective
- arxiv url: http://arxiv.org/abs/2504.03503v1
- Date: Fri, 04 Apr 2025 14:58:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:30.161309
- Title: Operator Learning: A Statistical Perspective
- Title(参考訳): オペレーターの学習 - 統計的展望
- Authors: Unique Subedi, Ambuj Tewari,
- Abstract要約: 演算子学習は無限次元関数空間間の写像を近似するための科学計算の強力なツールとして登場した。
まず,関数から関数への回帰問題として演算子学習を形式化し,その分野における最近の発展を概観する。
また, 物理・数学的制約をアーキテクチャ設計・学習プロセスに組み込むための戦略についても論じる。
- 参考スコア(独自算出の注目度): 17.98959620987217
- License:
- Abstract: Operator learning has emerged as a powerful tool in scientific computing for approximating mappings between infinite-dimensional function spaces. A primary application of operator learning is the development of surrogate models for the solution operators of partial differential equations (PDEs). These methods can also be used to develop black-box simulators to model system behavior from experimental data, even without a known mathematical model. In this article, we begin by formalizing operator learning as a function-to-function regression problem and review some recent developments in the field. We also discuss PDE-specific operator learning, outlining strategies for incorporating physical and mathematical constraints into architecture design and training processes. Finally, we end by highlighting key future directions such as active data collection and the development of rigorous uncertainty quantification frameworks.
- Abstract(参考訳): 演算子学習は無限次元関数空間間の写像を近似するための科学計算の強力なツールとして登場した。
演算子学習の第一の応用は、偏微分方程式(PDE)の解作用素に対する代理モデルの開発である。
これらの手法は、既知の数学的モデルがなくても、実験データからシステムの振る舞いをモデル化するブラックボックスシミュレータの開発にも利用できる。
本稿では,関数から関数への回帰問題として演算子学習を定式化することから始める。
また、PDE固有の演算子学習についても論じ、物理および数学的制約をアーキテクチャ設計とトレーニングプロセスに組み込むための戦略の概要を述べる。
最後に、アクティブデータ収集や厳密な不確実性定量化フレームワークの開発など、今後の重要な方向性を強調します。
関連論文リスト
- MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
数学的推論ステップ拡張のための新しいフレームワークであるMathFimerを紹介する。
我々は、慎重にキュレートしたNuminaMath-FIMデータセットに基づいて、特殊モデルMathFimer-7Bを開発した。
次に、これらのモデルを適用して、解鎖に詳細な中間ステップを挿入することで、既存の数学的推論データセットを強化する。
論文 参考訳(メタデータ) (2025-02-17T11:22:24Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation [4.286691905364396]
本稿では,PROSE-PDEという科学問題に対するマルチモーダル基礎モデルを提案する。
本モデルは,物理系の制御方程式を並列に学習しながら,システムの将来の状態を予測できるマルチオペレータ学習手法である。
論文 参考訳(メタデータ) (2024-04-18T17:34:20Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
オペレータ学習(Operator learning)は、機械学習から、関数のバナッハ空間間の近似演算子へのアイデアの適用を指す。
このレビューは、有限次元ユークリッド空間上で定義される関数の近似におけるディープニューラルネットワークの成功に基づいて構築されたニューラル演算子に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-24T04:40:27Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
本研究では、パラメトリック偏微分方程式(PDE)に対する時間適応演算子学習への機械学習の適用について検討する。
我々の焦点は、PDEパラメータを表す追加入力を処理するために既存の演算子学習方法を拡張することである。
目標は、短期的なソリューションを正確に予測し、堅牢な長期統計を提供する統一的な学習アプローチを作ることだ。
論文 参考訳(メタデータ) (2024-02-14T18:12:42Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
我々は、自己教師付き学習(SSL)のための共同埋め込み手法を実装することにより、PDEの汎用表現を学習する。
我々の表現は、PDEの係数の回帰などの不変タスクに対するベースラインアプローチよりも優れており、また、ニューラルソルバのタイムステッピング性能も向上している。
提案手法がPDEの汎用基盤モデルの開発に有効であることを期待する。
論文 参考訳(メタデータ) (2023-07-11T16:52:22Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。