論文の概要: MultiSTOP: Solving Functional Equations with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.14909v1
- Date: Tue, 23 Apr 2024 10:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:31:13.192404
- Title: MultiSTOP: Solving Functional Equations with Reinforcement Learning
- Title(参考訳): MultiSTOP:強化学習による関数方程式の解法
- Authors: Alessandro Trenta, Davide Bacciu, Andrea Cossu, Pietro Ferrero,
- Abstract要約: 物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
- 参考スコア(独自算出の注目度): 56.073581097785016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop MultiSTOP, a Reinforcement Learning framework for solving functional equations in physics. This new methodology produces actual numerical solutions instead of bounds on them. We extend the original BootSTOP algorithm by adding multiple constraints derived from domain-specific knowledge, even in integral form, to improve the accuracy of the solution. We investigate a particular equation in a one-dimensional Conformal Field Theory.
- Abstract(参考訳): 物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
ドメイン固有の知識から派生した複数の制約を積分形式でも追加することにより、元のBootSTOPアルゴリズムを拡張し、解の精度を向上する。
一次元のコンフォーマル場理論における特定の方程式について検討する。
関連論文リスト
- A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
提案手法の有効性は,Caputo-based distributed-order fractional differential equationsの数値実験を通じて検証した。
論文 参考訳(メタデータ) (2024-09-05T13:20:10Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
本稿では,物理インフォームド深層学習フレームワークにおける積分演算子近似のための効率的なテンソルベクトル積法を提案する。
我々は、この方法がフレドホルムとボルテラ積分作用素の両方に適用可能であることを実証する。
また,カプトー微分を効率的に計算する高速行列ベクトル積アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T13:43:58Z) - Transfer Operator Learning with Fusion Frame [0.0]
本研究は、部分微分方程式(PDE)を解くための演算子学習モデルの伝達学習能力を向上する新しいフレームワークを提案する。
我々は,融合フレームとPOD-DeepONetを組み合わせた革新的なアーキテクチャを導入し,実験解析において様々なPDEに対して優れた性能を示す。
我々のフレームワークは、オペレーターラーニングモデルにおけるトランスファーラーニングの重要な課題に対処し、幅広い科学的・工学的応用において適応的で効率的なソリューションの道を開く。
論文 参考訳(メタデータ) (2024-08-20T00:03:23Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - QBoost for regression problems: solving partial differential equations [0.0]
ハイブリッドアルゴリズムは、必要なキュービット数において、良好な精度と良好なスケーリングで偏微分方程式の解を求めることができる。
古典的な部分は、機械学習を用いて偏微分方程式を解くことができる複数の回帰器を訓練することによって構成される。
量子部分は、回帰問題を解くためにQBoostアルゴリズムを適用することで構成される。
論文 参考訳(メタデータ) (2021-08-30T16:13:04Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。