論文の概要: CodeJudge-Eval: Can Large Language Models be Good Judges in Code Understanding?
- arxiv url: http://arxiv.org/abs/2408.10718v2
- Date: Fri, 13 Sep 2024 08:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 22:28:05.675363
- Title: CodeJudge-Eval: Can Large Language Models be Good Judges in Code Understanding?
- Title(参考訳): CodeJudge-Eval: 大規模言語モデルはコード理解の優れた判断者になれるか?
- Authors: Yuwei Zhao, Ziyang Luo, Yuchen Tian, Hongzhan Lin, Weixiang Yan, Annan Li, Jing Ma,
- Abstract要約: 我々は,大規模言語モデルのコード理解能力を評価するための新しいベンチマークであるCodeJudge-Evalを紹介する。
CJ-Evalは、様々なエラータイプやコンパイル問題を含む、提供されたコードソリューションの正確性を決定するためにモデルに挑戦する。
CJ-Evalでよく知られた12個のLCMの評価は、最先端のモデルでさえ苦戦していることを示している。
- 参考スコア(独自算出の注目度): 18.67932455052577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have showcased impressive code generation capabilities, primarily evaluated through language-to-code benchmarks. However, these benchmarks may not fully capture a model's code understanding abilities. We introduce CodeJudge-Eval (CJ-Eval), a novel benchmark designed to assess LLMs' code understanding abilities from the perspective of code judging rather than code generation. CJ-Eval challenges models to determine the correctness of provided code solutions, encompassing various error types and compilation issues. By leveraging a diverse set of problems and a fine-grained judging system, CJ-Eval addresses the limitations of traditional benchmarks, including the potential memorization of solutions. Evaluation of 12 well-known LLMs on CJ-Eval reveals that even state-of-the-art models struggle, highlighting the benchmark's ability to probe deeper into models' code understanding abilities. Our codes and benchmark are available at \url{https://github.com/CodeLLM-Research/CodeJudge-Eval}.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は印象的なコード生成能力を示しており、主に言語間ベンチマークによって評価されている。
しかし、これらのベンチマークはモデルのコード理解能力を十分に捉えていないかもしれない。
コード生成ではなくコード判断の観点からLLMのコード理解能力を評価するために設計された新しいベンチマークであるCodeJudge-Eval(CJ-Eval)を紹介する。
CJ-Evalは、様々なエラータイプやコンパイル問題を含む、提供されたコードソリューションの正確性を決定するためにモデルに挑戦する。
様々な問題ときめ細かい判断システムを活用することで、CJ-Evalはソリューションの暗記を含む従来のベンチマークの限界に対処する。
CJ-Evalでよく知られた12のLCMの評価は、最先端のモデルでさえ苦戦し、ベンチマークがモデルのコード理解能力を深く調査する能力を強調していることを示している。
コードとベンチマークは \url{https://github.com/CodeLLM-Research/CodeJudge-Eval} で公開されています。
関連論文リスト
- Insights from Benchmarking Frontier Language Models on Web App Code Generation [1.7268889851975326]
本稿では,WebApp1Kベンチマークによる16のフロンティア大言語モデル(LLM)の評価から得られた知見について述べる。
結果は、全てのモデルが類似した知識を持っているが、それらの性能は、それらが犯した誤りの頻度によって区別されることを示している。
論文 参考訳(メタデータ) (2024-09-08T18:24:26Z) - Can OpenSource beat ChatGPT? -- A Comparative Study of Large Language Models for Text-to-Code Generation [0.24578723416255752]
テキスト・ツー・コード生成の能力について,5つの大言語モデル (LLM) を評価した。
ChatGPTはこれらの典型的なプログラミング課題を、Code Llamaのようなコード特化モデルよりもはるかに効果的に処理することができる。
論文 参考訳(メタデータ) (2024-09-06T10:03:49Z) - CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
CRUXEVAL-Xコード推論ベンチマークには19のプログラミング言語が含まれている。
各言語に対して少なくとも600人の被験者で構成され、合計19Kのコンテンツ一貫性テストがある。
Pythonでのみトレーニングされたモデルでさえ、他の言語で34.4%のPass@1を達成することができる。
論文 参考訳(メタデータ) (2024-08-23T11:43:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Beyond Functional Correctness: Investigating Coding Style Inconsistencies in Large Language Models [28.295926947968574]
大規模言語モデル(LLM)は、コード生成の分野にパラダイムシフトをもたらした。
我々は、コードLLMによって生成されたコードと、人間の開発者が書いたコードとのコーディングスタイルの違いを経験的に分析する。
論文 参考訳(メタデータ) (2024-06-29T14:56:11Z) - LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code [34.03774442237902]
コード関連アプリケーションに適用される大規模言語モデルは、顕著な分野として現れている。
既存の評価ベンチマーク(HumanEval、MBPPなど)は、もはやその能力を評価するには不十分である。
コードに対するLLMの包括的で汚染のない評価手法であるLiveCodeBenchを提案する。
論文 参考訳(メタデータ) (2024-03-12T17:58:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - ReCode: Robustness Evaluation of Code Generation Models [90.10436771217243]
コード生成モデルのための総合的ロバストネス評価ベンチマークであるReCodeを提案する。
ドクストリング、関数と変数名、コード構文、コードフォーマットのコードに特化して、30以上の変換をカスタマイズします。
ヒトのアノテータでは、摂動プロンプトの90%以上が本来のプロンプトの意味を変えていないことが確認された。
論文 参考訳(メタデータ) (2022-12-20T14:11:31Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。