論文の概要: Conformalized Interval Arithmetic with Symmetric Calibration
- arxiv url: http://arxiv.org/abs/2408.10939v2
- Date: Thu, 02 Jan 2025 04:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 17:39:32.583656
- Title: Conformalized Interval Arithmetic with Symmetric Calibration
- Title(参考訳): 対称校正によるコンフォーマル化弁間算術
- Authors: Rui Luo, Zhixin Zhou,
- Abstract要約: 我々は,複数の目標の和に対する予測区間に対して,単一目標に対する共形予測区間を開発する。
提案手法は, 既存のコンフォメーション手法や非コンフォメーション手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 9.559062601251464
- License:
- Abstract: Uncertainty quantification is essential in decision-making, especially when joint distributions of random variables are involved. While conformal prediction provides distribution-free prediction sets with valid coverage guarantees, it traditionally focuses on single predictions. This paper introduces novel conformal prediction methods for estimating the sum or average of unknown labels over specific index sets. We develop conformal prediction intervals for single target to the prediction interval for sum of multiple targets. Under permutation invariant assumptions, we prove the validity of our proposed method. We also apply our algorithms on class average estimation and path cost prediction tasks, and we show that our method outperforms existing conformalized approaches as well as non-conformal approaches.
- Abstract(参考訳): 不確かさの定量化は、特に確率変数の合同分布が関与する場合、意思決定において不可欠である。
共形予測は、有効なカバレッジ保証を備えた分布のない予測セットを提供するが、伝統的に単一の予測に焦点を当てている。
本稿では,未知ラベルの和や平均を特定のインデックス集合上で推定するための新しい共形予測手法を提案する。
我々は,複数の目標の和に対する予測区間に対して,単一目標に対する共形予測区間を開発する。
置換不変仮定の下では,提案手法の有効性が証明される。
また,クラス平均推定やパスコスト予測タスクにもアルゴリズムを適用し,提案手法が既存のコンフォーマル化手法や非コンフォーマルアプローチよりも優れていることを示す。
関連論文リスト
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Invariant Probabilistic Prediction [45.90606906307022]
任意の分布シフトは、一般に不変かつ頑健な確率的予測を認めないことを示す。
Invariant probabilistic predictions called IPP, and study the consistency of the underlying parameters。
論文 参考訳(メタデータ) (2023-09-18T18:50:24Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
等角予測と分割等角予測は、統計的保証付き予測間隔を推定するための分布自由なアプローチを提供する。
近年の研究では、分割共形予測は、限界被覆に着目した場合、最先端の予測間隔を生み出すことが示されている。
本稿では,正規化やモンドリアン等式予測などの手法を用いて,予測間隔の構築方法について,新たな光を当てることを試みる。
論文 参考訳(メタデータ) (2023-09-15T11:10:46Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Interpretable Machines: Constructing Valid Prediction Intervals with
Random Forests [0.0]
最近の研究で機械学習アルゴリズムを使用する場合の重要な問題は、解釈能力の欠如です。
Random Forest Regression Learnerのこのギャップへの貢献について紹介します。
いくつかのパラメトリックおよび非パラメトリック予測区間がランダムフォレスト点予測のために提供される。
モンテカルロシミュレーションによる徹底的な調査を行い,提案手法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-09T23:05:55Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。