論文の概要: CTP-LLM: Clinical Trial Phase Transition Prediction Using Large Language Models
- arxiv url: http://arxiv.org/abs/2408.10995v1
- Date: Tue, 20 Aug 2024 16:43:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:55:01.401371
- Title: CTP-LLM: Clinical Trial Phase Transition Prediction Using Large Language Models
- Title(参考訳): CTP-LLM:大規模言語モデルを用いた臨床試験相転移予測
- Authors: Michael Reinisch, Jianfeng He, Chenxi Liao, Sauleh Ahmad Siddiqui, Bei Xiao,
- Abstract要約: 臨床治験結果予測 (CTOP) を試験設計文書を用いて検討し, 相転移を自動的に予測する。
GPT-3.5-based model (CTP-LLM) は,ヒトに選択された特徴を必要とせず,試験のオリジナルプロトコルテキストを解析することにより臨床治験相転移を予測する。
- 参考スコア(独自算出の注目度): 5.4315728770105185
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: New medical treatment development requires multiple phases of clinical trials. Despite the significant human and financial costs of bringing a drug to market, less than 20% of drugs in testing will make it from the first phase to final approval. Recent literature indicates that the design of the trial protocols significantly contributes to trial performance. We investigated Clinical Trial Outcome Prediction (CTOP) using trial design documents to predict phase transitions automatically. We propose CTP-LLM, the first Large Language Model (LLM) based model for CTOP. We also introduce the PhaseTransition (PT) Dataset; which labels trials based on their progression through the regulatory process and serves as a benchmark for CTOP evaluation. Our fine-tuned GPT-3.5-based model (CTP-LLM) predicts clinical trial phase transition by analyzing the trial's original protocol texts without requiring human-selected features. CTP-LLM achieves a 67% accuracy rate in predicting trial phase transitions across all phases and a 75% accuracy rate specifically in predicting the transition from Phase~III to final approval. Our experimental performance highlights the potential of LLM-powered applications in forecasting clinical trial outcomes and assessing trial design.
- Abstract(参考訳): 新しい医療開発には、臨床試験の複数のフェーズが必要です。
医薬品を市場に出すための人的および財政的なコストは大きいが、テスト中の薬物の20%未満は、第1フェーズから最終承認までそれを実現する。
近年の文献では、トライアルプロトコルの設計がトライアル性能に大きく寄与していることが示されている。
臨床治験結果予測 (CTOP) を試験設計文書を用いて検討し, 自動的に相転移を予測した。
本稿では,CTOPのためのCTP-LLM(Large Language Model:LLM)モデルを提案する。
また、規制プロセスの進捗に基づいて試行をラベル付けし、CTOP評価のベンチマークとして機能するフェーズトランジション(PT)データセットについても紹介する。
GPT-3.5-based model (CTP-LLM) は,ヒトに選択された特徴を必要とせず,試験のオリジナルプロトコルテキストを解析することにより臨床治験相転移を予測する。
CTP-LLMは、全ての相にわたる試行段階の遷移を予測する場合の67%の精度率と、第III相から最終承認までの遷移を予測する場合の75%の精度率を達成する。
臨床治験結果の予測と治験設計の評価において, LLMを活用した応用の可能性を強調した。
関連論文リスト
- Can artificial intelligence predict clinical trial outcomes? [5.326858857564308]
本研究では,大言語モデル(LLM)の臨床試験結果の予測能力について検討した。
我々は、バランスの取れた精度、特異性、リコール、マシューズ相関係数(MCC)などの指標を用いてモデルの性能を比較する。
高い複雑さを特徴とする腫瘍学の試行は、全てのモデルで難しいままである。
論文 参考訳(メタデータ) (2024-11-26T17:05:27Z) - Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting [11.96384267146423]
臨床変数の時系列予測(TSF)により原因を直接予測することを提案する。
モデルトレーニングは特定のラベルに依存しないため、予測されたデータはコンセンサスベースのラベルを予測するために使用できる。
論文 参考訳(メタデータ) (2024-08-07T14:52:06Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Language Interaction Network for Clinical Trial Approval Estimation [37.60098683485169]
本稿では,言語相互作用ネットワーク(LINT, Language Interaction Network)について紹介する。
臨床治験の3段階にわたって厳格にLINTを試験し,ROC-AUCスコアは0.770,0.740,0.748となった。
論文 参考訳(メタデータ) (2024-04-26T14:50:59Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
本稿では,言語モデルを用いた臨床検査基準の設計を支援するAutoTrialという手法を提案する。
70K以上の臨床試験で、AutoTrialが高品質な基準テキストを生成することが確認された。
論文 参考訳(メタデータ) (2023-05-19T01:04:16Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
疾患の結果に関する歴史的データは、様々な方法で臨床試験の分析に組み込むことができる。
我々は, 予測モデルからの予後スコアを用いて, 治療効果推定の効率を向上する既存の文献に基づいて構築する。
論文 参考訳(メタデータ) (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Comparative Analysis of Predictive Methods for Early Assessment of
Compliance with Continuous Positive Airway Pressure Therapy [55.41644538483948]
CPAP (Continuous positive airway pressure, CPAP) は, 夜間のCPAP平均使用時間の4h以上と認められた。
これまでの研究では、治療の遵守に大きく関係した要因が報告されている。
本研究は,CPAP療法を併用したコンプライアンス分類器を患者フォローアップの3つの異なるタイミングで構築することにより,この方向へのさらなる一歩を踏み出すことを目的とする。
論文 参考訳(メタデータ) (2019-12-27T14:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。