論文の概要: Disentangling segmental and prosodic factors to non-native speech comprehensibility
- arxiv url: http://arxiv.org/abs/2408.10997v1
- Date: Tue, 20 Aug 2024 16:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:55:01.394876
- Title: Disentangling segmental and prosodic factors to non-native speech comprehensibility
- Title(参考訳): 非母語音声理解における分節的要因と韻律的要因の相違
- Authors: Waris Quamer, Ricardo Gutierrez-Osuna,
- Abstract要約: 現在のアクセント変換システムは、非ネイティブアクセントの2つの主要な源である分節的特徴と韻律的特徴を分離しない。
本稿では,アクセントから声質を分離するACシステムを提案する。
本研究では,非母語音声の知覚的理解度に係わる部分的特徴と韻律の個人的寄与を定量化するために,知覚的聴取テストを実施している。
- 参考スコア(独自算出の注目度): 11.098498920630782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current accent conversion (AC) systems do not disentangle the two main sources of non-native accent: segmental and prosodic characteristics. Being able to manipulate a non-native speaker's segmental and/or prosodic channels independently is critical to quantify how these two channels contribute to speech comprehensibility and social attitudes. We present an AC system that not only decouples voice quality from accent, but also disentangles the latter into its segmental and prosodic characteristics. The system is able to generate accent conversions that combine (1) the segmental characteristics from a source utterance, (2) the voice characteristics from a target utterance, and (3) the prosody of a reference utterance. We show that vector quantization of acoustic embeddings and removal of consecutive duplicated codewords allows the system to transfer prosody and improve voice similarity. We conduct perceptual listening tests to quantify the individual contributions of segmental features and prosody on the perceived comprehensibility of non-native speech. Our results indicate that, contrary to prior research in non-native speech, segmental features have a larger impact on comprehensibility than prosody. The proposed AC system may also be used to study how segmental and prosody cues affect social attitudes towards non-native speech.
- Abstract(参考訳): 電流アクセント変換(AC)システムは、非ネイティブアクセントの2つの主要な源である分節的特性と韻律的特性を分離しない。
非ネイティブ話者のセグメンショナルチャネルや韻律チャネルを独立して操作できることは、これらの2つのチャンネルが音声の理解性と社会的態度にどのように貢献するかを定量化するために重要である。
本稿では,アクセントから声質を分離するだけでなく,後者を分節的・韻律的な特徴に分解するACシステムを提案する。
本システムは,(1)ソース発話からのセグメント特性,(2)ターゲット発話からの音声特性,(3)参照発話の韻律を組み合わせたアクセント変換を生成することができる。
音響埋め込みのベクトル量子化と連続的に重複するコードワードの除去により,韻律を伝達し,音声の類似性を向上させることができることを示す。
本研究では,非母語音声の知覚的理解度に係わる部分的特徴と韻律の個人的寄与を定量化するために,知覚的聴取テストを実施している。
本研究は,非母語音声の先行研究とは対照的に,分節的特徴が韻律よりも理解性に大きく影響していることを示す。
提案したACシステムは,非母国語に対する社会的態度にセグメンダルおよび韻律的手がかりがどのように影響するかを研究するためにも用いられる。
関連論文リスト
- Accent conversion using discrete units with parallel data synthesized from controllable accented TTS [56.18382038512251]
アクセント変換(AC)の目的は、コンテンツと話者のアイデンティティを保ちながら、アクセントを変換することである。
従来の手法では、推論中に参照発話が必要であったり、話者のアイデンティティを十分に保持していなかったり、ネイティブでないアクセントごとにのみトレーニング可能な1対1のシステムを使用していた。
本稿では,これらの問題を克服するために,多くのアクセントをネイティブに変換する,有望なACモデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T19:52:10Z) - Analyzing Speech Unit Selection for Textless Speech-to-Speech Translation [23.757896930482342]
本研究は、下流タスクの研究を通して選択プロセスについて考察する。
再生性能のよいユニットは、翻訳効率を高めるユニットと必ずしも相関しない。
論文 参考訳(メタデータ) (2024-07-08T08:53:26Z) - A Novel Labeled Human Voice Signal Dataset for Misbehavior Detection [0.7223352886780369]
本研究は,音声認識のための自動学習システムにおける音声トーンと配信の重要性を強調した。
これは、人間の行動が音声信号の知覚と分類に与える影響を解明することにより、音声信号解析の幅広い分野に寄与する。
論文 参考訳(メタデータ) (2024-06-28T18:55:07Z) - Transfer the linguistic representations from TTS to accent conversion
with non-parallel data [7.376032484438044]
アクセント変換は、話者のアイデンティティを保ちながら、ソース音声のアクセントをターゲットアクセントに変換することを目的としている。
本稿ではアクセントに依存しない言語表現を学習するアクセント変換のための新しい非自己回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-07T16:39:34Z) - Disentangling Prosody Representations with Unsupervised Speech
Reconstruction [22.873286925385543]
本研究の目的は、教師なし再構成に基づく音声からの感情的韻律のゆがみに対処することである。
具体的には,提案した音声再構成モデルProsody2Vecの3つの重要なコンポーネントを同定し,設計し,実装し,統合する。
まず, 感情的コーパスのProsody2Vec表現を事前訓練し, 特定のデータセットのモデルを微調整し, 音声感情認識(SER)と感情音声変換(EVC)タスクを実行する。
論文 参考訳(メタデータ) (2022-12-14T01:37:35Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
既存のシステムは韻律と言語内容の相関を無視し、変換された音声の自然度を低下させる。
自己教師付き離散音声単位を言語表現として活用するカスケードモジュラーシステムを提案する。
実験により,本システムは,自然性,知性,話者伝達性,韻律伝達性において,従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2022-11-12T00:54:09Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
音声を用いた場合の視覚的モダリティの利点は、2つのニューラルデバーベレーションアプローチでのみ示される。
LRS2データセットを用いて行った実験から,提案手法がベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-04-05T04:16:03Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
本稿では,潜在言語埋め込みをモデル化するための量子化ベクトルの利用について検討する。
トレーニングにおいて、潜伏空間上の異なるポリシーを強制することにより、潜伏言語埋め込みを得ることができる。
実験の結果,ベクトル量子化法で構築した音声クローニングシステムは,知覚的評価の点でわずかに劣化していることがわかった。
論文 参考訳(メタデータ) (2021-06-25T07:51:35Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
ワンショット音声変換は、音声表現のアンタングルメントによって効果的に実現できる。
コンテンツエンコーディングにはベクトル量子化(VQ)を使用し、トレーニング中に相互情報(MI)を相関指標として導入する。
実験結果は,提案手法が効果的に非絡み合った音声表現を学習する際の優位性を反映している。
論文 参考訳(メタデータ) (2021-06-18T13:50:38Z) - An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and
Separation [57.68765353264689]
音声強調と音声分離は関連する2つの課題である。
伝統的に、これらのタスクは信号処理と機械学習技術を使って取り組まれてきた。
ディープラーニングは強力なパフォーマンスを達成するために利用されています。
論文 参考訳(メタデータ) (2020-08-21T17:24:09Z) - On the Mutual Information between Source and Filter Contributions for
Voice Pathology Detection [11.481208551940998]
本稿では,音声信号から直接音声の病状を自動的に検出する問題に対処する。
音声や声帯信号に関連があるか,韻律に関連があるかによって,3つの特徴セットが提案される。
論文 参考訳(メタデータ) (2020-01-02T10:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。