Making Large Vision Language Models to be Good Few-shot Learners
- URL: http://arxiv.org/abs/2408.11297v1
- Date: Wed, 21 Aug 2024 03:01:11 GMT
- Title: Making Large Vision Language Models to be Good Few-shot Learners
- Authors: Fan Liu, Wenwen Cai, Jian Huo, Chuanyi Zhang, Delong Chen, Jun Zhou,
- Abstract summary: Few-shot classification (FSC) is a fundamental yet challenging task in computer vision.
LVLMs risk learning specific response formats rather than effectively extracting useful information from support data.
In this paper, we investigate LVLMs' performance in FSC and identify key issues such as insufficient learning and the presence of severe positional biases.
- Score: 11.204701216476815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot classification (FSC) is a fundamental yet challenging task in computer vision that involves recognizing novel classes from limited data. While previous methods have focused on enhancing visual features or incorporating additional modalities, Large Vision Language Models (LVLMs) offer a promising alternative due to their rich knowledge and strong visual perception. However, LVLMs risk learning specific response formats rather than effectively extracting useful information from support data in FSC tasks. In this paper, we investigate LVLMs' performance in FSC and identify key issues such as insufficient learning and the presence of severe positional biases. To tackle the above challenges, we adopt the meta-learning strategy to teach models "learn to learn". By constructing a rich set of meta-tasks for instruction fine-tuning, LVLMs enhance the ability to extract information from few-shot support data for classification. Additionally, we further boost LVLM's few-shot learning capabilities through label augmentation and candidate selection in the fine-tuning and inference stage, respectively. Label augmentation is implemented via a character perturbation strategy to ensure the model focuses on support information. Candidate selection leverages attribute descriptions to filter out unreliable candidates and simplify the task. Extensive experiments demonstrate that our approach achieves superior performance on both general and fine-grained datasets. Furthermore, our candidate selection strategy has been proven beneficial for training-free LVLMs.
Related papers
- EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection [21.091101582856183]
We introduce a novel prompt learning-based framework for Efficient Zero-Shot HOI detection (EZ-HOI).
First, we introduce Large Language Model (LLM) and VLM guidance for learnable prompts, integrating detailed HOI descriptions and visual semantics to adapt VLMs to HOI tasks.
We show that our framework achieves state-of-the-art performance across various zero-shot settings with only 10.35% to 33.95% of the trainable parameters compared to existing methods.
arXiv Detail & Related papers (2024-10-31T13:06:29Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
Context-aware emotion recognition (CAER) is a complex and significant task that requires perceiving emotions from various contextual cues.
Previous approaches primarily focus on designing sophisticated architectures to extract emotional cues from images.
This paper systematically explore the potential of leveraging Large Vision-Language Models (LVLMs) to empower the CAER task.
arXiv Detail & Related papers (2024-07-16T01:28:06Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
The scaling of large language models to encode all the world's knowledge is unsustainable and has exacerbated resource barriers.
Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored.
This paper introduces RAVEN, a retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning.
arXiv Detail & Related papers (2024-06-27T13:08:35Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models [26.964848679914354]
CoKnow is a framework that enhances Prompt Learning for Vision-Language Models with rich contextual knowledge.
We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods.
arXiv Detail & Related papers (2024-04-16T07:44:52Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - Active Prompt Learning in Vision Language Models [21.276006224504748]
We devise a novel active learning framework for pre-trained Vision Language Models, denoted as PCB.
We conduct experiments on seven different real-world datasets, and the results demonstrate that PCB surpasses conventional active learning and random sampling methods.
arXiv Detail & Related papers (2023-11-18T22:42:16Z) - Learning without Forgetting for Vision-Language Models [65.49600786387106]
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world.
Recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations.
We propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting.
arXiv Detail & Related papers (2023-05-30T17:59:32Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.