EEG-Defender: Defending against Jailbreak through Early Exit Generation of Large Language Models
- URL: http://arxiv.org/abs/2408.11308v1
- Date: Wed, 21 Aug 2024 03:25:31 GMT
- Title: EEG-Defender: Defending against Jailbreak through Early Exit Generation of Large Language Models
- Authors: Chongwen Zhao, Zhihao Dou, Kaizhu Huang,
- Abstract summary: Large Language Models (LLMs) are increasingly attracting attention in various applications.
There is a growing concern as some users attempt to exploit these models for malicious purposes.
We introduce a simple yet significant defense approach called EEG-Defender for LLMs.
- Score: 14.5687457011354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly attracting attention in various applications. Nonetheless, there is a growing concern as some users attempt to exploit these models for malicious purposes, including the synthesis of controlled substances and the propagation of disinformation. In an effort to mitigate such risks, the concept of "Alignment" technology has been developed. However, recent studies indicate that this alignment can be undermined using sophisticated prompt engineering or adversarial suffixes, a technique known as "Jailbreak." Our research takes cues from the human-like generate process of LLMs. We identify that while jailbreaking prompts may yield output logits similar to benign prompts, their initial embeddings within the model's latent space tend to be more analogous to those of malicious prompts. Leveraging this finding, we propose utilizing the early transformer outputs of LLMs as a means to detect malicious inputs, and terminate the generation immediately. Built upon this idea, we introduce a simple yet significant defense approach called EEG-Defender for LLMs. We conduct comprehensive experiments on ten jailbreak methods across three models. Our results demonstrate that EEG-Defender is capable of reducing the Attack Success Rate (ASR) by a significant margin, roughly 85\% in comparison with 50\% for the present SOTAs, with minimal impact on the utility and effectiveness of LLMs.
Related papers
- Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - Multi-round jailbreak attack on large language models [2.540971544359496]
We introduce a multi-round jailbreak approach to better understand "jailbreak" attacks.
This method can rewrite the dangerous prompts, decomposing them into a series of less harmful sub-questions.
Our experimental results show a 94% success rate on the llama2-7B.
arXiv Detail & Related papers (2024-10-15T12:08:14Z) - ObscurePrompt: Jailbreaking Large Language Models via Obscure Input [32.00508793605316]
We introduce a straightforward and novel method, named ObscurePrompt, for jailbreaking LLMs.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - Rethinking Jailbreaking through the Lens of Representation Engineering [45.70565305714579]
The recent surge in jailbreaking methods has revealed the vulnerability of Large Language Models (LLMs) to malicious inputs.
This study investigates the vulnerability of safety-aligned LLMs by uncovering specific activity patterns.
arXiv Detail & Related papers (2024-01-12T00:50:04Z) - Make Them Spill the Beans! Coercive Knowledge Extraction from
(Production) LLMs [31.80386572346993]
We exploit the fact that even when an LLM rejects a toxic request, a harmful response often hides deep in the output logits.
This approach differs from and outperforms jail-breaking methods, achieving 92% effectiveness compared to 62%, and is 10 to 20 times faster.
Our findings indicate that interrogation can extract toxic knowledge even from models specifically designed for coding tasks.
arXiv Detail & Related papers (2023-12-08T01:41:36Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation [39.829517061574364]
Even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks"
We propose the generation exploitation attack, which disrupts model alignment by only manipulating variations of decoding methods.
Our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs.
arXiv Detail & Related papers (2023-10-10T20:15:54Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.