FATE: Focal-modulated Attention Encoder for Temperature Prediction
- URL: http://arxiv.org/abs/2408.11336v1
- Date: Wed, 21 Aug 2024 04:40:18 GMT
- Title: FATE: Focal-modulated Attention Encoder for Temperature Prediction
- Authors: Tajamul Ashraf, Janibul Bashir,
- Abstract summary: Climate change is one of the major challenges of the twenty-first century.
Traditional data-driven models often use recurrent neural networks (RNNs) but face limitations in parallelization.
We introduce a novel approach based on the FocalNet Transformer architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the major challenges of the twenty-first century is climate change, evidenced by rising sea levels, melting glaciers, and increased storm frequency. Accurate temperature forecasting is vital for understanding and mitigating these impacts. Traditional data-driven models often use recurrent neural networks (RNNs) but face limitations in parallelization, especially with longer sequences. To address this, we introduce a novel approach based on the FocalNet Transformer architecture. Our Focal modulation Attention Encoder (FATE) framework operates in a multi-tensor format, utilizing tensorized modulation to capture spatial and temporal nuances in meteorological data. Comparative evaluations against existing transformer encoders, 3D CNNs, LSTM, and ConvLSTM models show that FATE excels at identifying complex patterns in temperature data. Additionally, we present a new labeled dataset, the Climate Change Parameter dataset (CCPD), containing 40 years of data from Jammu and Kashmir on seven climate-related parameters. Experiments with real-world temperature datasets from the USA, Canada, and Europe show accuracy improvements of 12\%, 23\%, and 28\%, respectively, over current state-of-the-art models. Our CCPD dataset also achieved a 24\% improvement in accuracy. To support reproducible research, we have released the source code and pre-trained FATE model at \href{https://github.com/Tajamul21/FATE}{https://github.com/Tajamul21/FATE}.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data [47.14384085714576]
We introduce gridded pseudo-tokenPs to handle unstructured observations and a processor containing gridded pseudo-tokens that leverage efficient attention mechanisms.
Our method consistently outperforms a range of strong baselines on various synthetic and real-world regression tasks involving large-scale data.
The real-life experiments are performed on weather data, demonstrating the potential of our approach to bring performance and computational benefits when applied at scale in a weather modelling pipeline.
arXiv Detail & Related papers (2024-10-09T10:00:56Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model [10.132124789018262]
We introduce the Cold Causal Demand Forecasting (CDF-cold) framework that integrates causal inference with deep learning-based models.
Our experiments demonstrate that the CDF-cold framework outperforms state-of-the-art forecasting models in predicting future values of multivariate time series data.
arXiv Detail & Related papers (2023-06-15T16:36:34Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
Data collected from sensors often contain missing values due to faulty equipment or maintenance issues.
We propose two models that are capable of performing multivariate-temporal forecasting while handling missing data without need for imputation.
arXiv Detail & Related papers (2023-06-05T17:06:23Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - TENT: Tensorized Encoder Transformer for Temperature Forecasting [3.498371632913735]
We introduce a new model based on the Transformer architecture for weather forecasting.
We show that compared to the original transformer and 3D convolutional neural networks, the proposed TENT model can better model the underlying complex pattern of weather data.
Experiments on two real-life weather datasets are performed.
arXiv Detail & Related papers (2021-06-28T14:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.