Upper Bound on Locally Extractable Energy from Entangled Pure State under Feedback Control
- URL: http://arxiv.org/abs/2408.11522v2
- Date: Fri, 23 Aug 2024 04:21:33 GMT
- Title: Upper Bound on Locally Extractable Energy from Entangled Pure State under Feedback Control
- Authors: Kanji Itoh, Yusuke Masaki, Hiroaki Matsueda,
- Abstract summary: We introduce an effective thermodynamics for multipartite entangled pure states.
We derive an upper bound on extractable energy with feedback control from a subsystem under a local Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an effective thermodynamics for multipartite entangled pure states and derive an upper bound on extractable energy with feedback control from a subsystem under a local Hamiltonian. The inequality that gives the upper bound corresponds to the second law of information thermodynamics in our effective thermodynamics. In addition, we derive a more general bound that is determined only by an initial state and the local Hamiltonian. This bound gives an explicit relationship between the extractable energy and the entanglement structure of the initial state. We also investigate the tightness of the upper bounds and show that the bounds can be achieved in a simple example.
Related papers
- The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough [40.82741665804367]
We study a simple approach of maximizing the entropy over observations in place true latent states.
We show how knowledge of the latter can be exploited to compute a regularization of the observation entropy to improve principled performance.
arXiv Detail & Related papers (2024-06-18T17:00:13Z) - Universal Upper Bound on Ergotropy and No-Go Theorem by the Eigenstate Thermalization Hypothesis [9.361474110798143]
We show that the maximum extractable work (ergotropy) from a quantum many-body system is constrained by local athermality of an initial state and local entropy decrease brought about by quantum operations.
Our result bridges two independently studied concepts of quantum thermodynamics, the second law and thermalization, via intrasystem correlations in many-body systems as a resource for work extraction.
arXiv Detail & Related papers (2024-06-17T00:20:33Z) - Coherence manipulation in asymmetry and thermodynamics [44.99833362998488]
In the classical regime, thermodynamic state transformations are governed by the free energy.
In the quantum regime, coherence and free energy are two independent resources.
We show that allowing along with a source of free energy allows us to amplify any quantum coherence present in the quantum state arbitrarily.
arXiv Detail & Related papers (2023-08-24T14:18:19Z) - Ergotropic interpretation of entanglement entropy [0.0]
Entanglement entropy is one of the most prominent measures in quantum physics.
We show that it has an interesting ergotropic interpretation in terms of unitarily extracted work.
arXiv Detail & Related papers (2023-06-15T09:29:45Z) - Quantum Entanglement and the Thermal Hadron [0.0]
This paper tests how effectively the bound states of strongly interacting gauge theories are amenable to an emergent description as a thermal ensemble.
This description can be derived from a conjectured minimum free energy principle, with the entanglement entropy of two-parton subsystems playing the role of thermodynamic entropy.
arXiv Detail & Related papers (2022-11-25T19:00:03Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Fluctuation-dissipation relations for thermodynamic distillation
processes [0.10427337206896375]
fluctuation-dissipation theorem is a fundamental result in statistical physics.
We first characterise optimal thermodynamic distillation processes.
We then prove a relation between the amount of free energy dissipated in such processes and the free energy fluctuations of the initial state of the system.
arXiv Detail & Related papers (2021-05-25T08:53:19Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum
Systems [4.111899441919164]
Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower-bounded by a relative entropy between the unitarily-evolved state and the final state.
Our finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
arXiv Detail & Related papers (2021-02-15T05:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.