Quantum Entanglement and the Thermal Hadron
- URL: http://arxiv.org/abs/2211.14333v1
- Date: Fri, 25 Nov 2022 19:00:03 GMT
- Title: Quantum Entanglement and the Thermal Hadron
- Authors: Pouya Asadi, Varun Vaidya
- Abstract summary: This paper tests how effectively the bound states of strongly interacting gauge theories are amenable to an emergent description as a thermal ensemble.
This description can be derived from a conjectured minimum free energy principle, with the entanglement entropy of two-parton subsystems playing the role of thermodynamic entropy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper tests how effectively the bound states of strongly interacting
gauge theories are amenable to an emergent description as a thermal ensemble.
This description can be derived from a conjectured minimum free energy
principle, with the entanglement entropy of two-parton subsystems playing the
role of thermodynamic entropy. This allows us to calculate the ground state
hadron spectrum and wavefunction over a wide range of parton masses without
solving the Schr\"{o}dinger equation. We carry out this analysis for certain
illustrative models in 1+1 dimensions and discuss prospects for higher
dimensions.
Related papers
- Upper Bound on Locally Extractable Energy from Entangled Pure State under Feedback Control [0.0]
We introduce an effective thermodynamics for multipartite entangled pure states.
We derive an upper bound on extractable energy with feedback control from a subsystem under a local Hamiltonian.
arXiv Detail & Related papers (2024-08-21T10:55:26Z) - Quantum thermodynamics of nonequilibrium processes in lattice gauge theories [0.0]
We show how to define thermodynamic quantities using strong-coupling thermodynamics.
Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators.
arXiv Detail & Related papers (2024-04-03T18:00:03Z) - Heat and Work in Quantum Thermodynamics: a Cybernetic Approach [0.0]
We present a new proposal for distinguishing heat from work based on a control-theoretic observability decomposition.
We derive a Hermitian operator representing instantaneous dissipation of observable energy, and suggest a generalization of the von-Neumann entropy.
arXiv Detail & Related papers (2024-03-04T13:26:48Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Universal thermodynamics of an SU($N$) Fermi-Hubbard Model [0.0]
We numerically calculate the thermodynamics of the SU($N$) FHM in the two-dimensional square lattice near densities of one particle per site.
We find that for temperatures above the superexchange energy, where the correlation length is short, the energy, number of on-site pairs, and kinetic energy are universal functions of $N$.
arXiv Detail & Related papers (2021-08-09T16:25:33Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.