論文の概要: RaNDT SLAM: Radar SLAM Based on Intensity-Augmented Normal Distributions Transform
- arxiv url: http://arxiv.org/abs/2408.11576v1
- Date: Wed, 21 Aug 2024 12:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 17:07:27.253507
- Title: RaNDT SLAM: Radar SLAM Based on Intensity-Augmented Normal Distributions Transform
- Title(参考訳): RaNDT SLAM: 強度増分正規分布変換に基づくレーダSLAM
- Authors: Maximilian Hilger, Nils Mandischer, Burkhard Corves,
- Abstract要約: 本稿では,高速かつ正確なロボット軌道を生成する新しいレーダーSLAMフレームワークであるRaNDT SLAMを紹介する。
我々は新しいベンチマークデータセットとOxford Radar RobotCarデータセットでRaNDT SLAMを評価した。
- 参考スコア(独自算出の注目度): 0.16874375111244325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rescue robotics sets high requirements to perception algorithms due to the unstructured and potentially vision-denied environments. Pivoting Frequency-Modulated Continuous Wave radars are an emerging sensing modality for SLAM in this kind of environment. However, the complex noise characteristics of radar SLAM makes, particularly indoor, applications computationally demanding and slow. In this work, we introduce a novel radar SLAM framework, RaNDT SLAM, that operates fast and generates accurate robot trajectories. The method is based on the Normal Distributions Transform augmented by radar intensity measures. Motion estimation is based on fusion of motion model, IMU data, and registration of the intensity-augmented Normal Distributions Transform. We evaluate RaNDT SLAM in a new benchmark dataset and the Oxford Radar RobotCar dataset. The new dataset contains indoor and outdoor environments besides multiple sensing modalities (LiDAR, radar, and IMU).
- Abstract(参考訳): レスキューロボティクスは、非構造的で潜在的に視覚的な環境のために、認識アルゴリズムに高い要求を設定する。
波動周波数変調連続波レーダは、この種の環境でのSLAMに対する新たな検知モダリティである。
しかし、レーダーSLAMの複雑なノイズ特性は、特に屋内で、計算的に要求され、遅くなる。
本研究では,高速かつ正確なロボット軌道を生成する新しいレーダーSLAMフレームワークであるRaNDT SLAMを紹介する。
本手法は,レーダー強度測定による正規分布変換に基づく。
運動推定は、運動モデルの融合、IMUデータ、および強化正規分布変換の登録に基づく。
我々は新しいベンチマークデータセットとOxford Radar RobotCarデータセットでRaNDT SLAMを評価した。
新しいデータセットは、複数のセンシングモード(LiDAR、レーダー、IMU)に加えて、屋内および屋外環境を含んでいる。
関連論文リスト
- radarODE-MTL: A Multi-Task Learning Framework with Eccentric Gradient Alignment for Robust Radar-Based ECG Reconstruction [13.124543736214921]
この作業は、レーダーによるECG回復を創造的に3つの個別のタスクに分解する。
複数タスクの学習フレームワークであるRadarODE-MTLを提案し、一貫した雑音や突然の騒音に対する堅牢性を高める。
実験の結果,レーダノード-MTLはレーダ信号から正確なECG信号を頑健に再構成できることが示唆された。
論文 参考訳(メタデータ) (2024-10-11T09:28:09Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDARシミュレーションは、自動運転におけるクローズドループシミュレーションにおいて重要な役割を果たす。
都市景観におけるLiDARセンサスキャンをリアルタイムに再現するために,最初のLiDARガウス法であるLiDAR-GSを提案する。
我々の手法は、深度、強度、レイドロップチャンネルを同時に再現することに成功し、公開可能な大規模シーンデータセットにおけるフレームレートと品質の両方のレンダリング結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - BRSR-OpGAN: Blind Radar Signal Restoration using Operational Generative Adversarial Network [15.913517836391357]
現実世界のレーダー信号は、望ましくないエコー、センサーノイズ、意図的な妨害、干渉など、人工物が混ざり合っているため、しばしば破損する。
BRSR-OpGAN(Operational Generative Adversarial Network)を用いたブラインドレーダ信号復元の検討
このアプローチは、破壊の多様性や強度に関わらず、レーダ信号の品質を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-07-18T23:55:48Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Generation of Realistic Synthetic Raw Radar Data for Automated Driving
Applications using Generative Adversarial Networks [0.0]
本研究では、GAN(Generative Adversarial Network)を用いた合成生レーダデータを生成するFMCWレーダシミュレーションの高速化手法を提案する。
コードとトレーニング済みのウェイトはオープンソースで、GitHubから入手可能だ。
以上の結果から, 車両のコヒーレントレーダ反射と背景騒音は, チャープ, RAマップ, 物体検出結果の比較に基づいて, 現実的であることがわかった。
論文 参考訳(メタデータ) (2023-08-04T17:44:27Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
本稿では,ミリ波(mmWave)およびテラヘルツ(THz)ネットワークサービスの動的屋外環境における信頼性向上のための新しい手法を提案する。
これらの設定では、人や車などの障害物を動かすことで、視線接続(LoS)が簡単に中断される。
提案手法はRadar-Aided Blockage Dynamic Recognition (RaDaR)と呼ばれ、レーダー計測とフェデレートラーニング(FL)を活用して、二重出力ニューラルネットワーク(NN)モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-22T10:10:25Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
室内インパルス応答 (RIR) の低周波成分を正確にシミュレートすることが, 良好な脱ヴァーベレーションを実現する上で重要であることを示す。
本研究では, ハイブリッド合成RIRで訓練された音声残響モデルが, 従来の幾何線トレーシング法により学習されたRIRで訓練されたモデルよりも優れていたことを示す。
論文 参考訳(メタデータ) (2022-12-10T20:15:23Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。