Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
- URL: http://arxiv.org/abs/2408.12659v1
- Date: Thu, 22 Aug 2024 18:05:41 GMT
- Title: Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
- Authors: Ali Falahati, Mohammad Mohammadi Amiri,
- Abstract summary: We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation.
We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences.
Our approach ensures that buyers and sellers remain unaware of each other's datasets.
- Score: 9.633110326799992
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
Related papers
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
We introduce a novel technique termed Balance Alignment and Information-aware Examination (ALEX) to address the problem of graph transfer learning.
ALEX first employs singular value decomposition to generate different views with crucial structural semantics, which help provide robust node representations.
Building on this foundation, an adversarial domain discriminator is incorporated for the implicit domain alignment of complex multi-modal distributions.
arXiv Detail & Related papers (2023-09-26T04:59:49Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Metric Distribution to Vector: Constructing Data Representation via
Broad-Scale Discrepancies [15.40538348604094]
We present a novel embedding strategy named $mathbfMetricDistribution2vec$ to extract distribution characteristics into the vectorial representation for each data.
We demonstrate the application and effectiveness of our representation method in the supervised prediction tasks on extensive real-world structural graph datasets.
arXiv Detail & Related papers (2022-10-02T03:18:30Z) - A Survey on Fairness for Machine Learning on Graphs [2.3326951882644553]
This survey is the first one dedicated to fairness for relational data.
It aims to present a comprehensive review of state-of-the-art techniques in fairness on graph mining.
arXiv Detail & Related papers (2022-05-11T10:40:56Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.