論文の概要: BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2408.13370v1
- Date: Fri, 23 Aug 2024 21:04:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:49:09.580395
- Title: BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting
- Title(参考訳): BiGS: 楽しむ3Dガウススティングのための双方向ガウスプリミティブ
- Authors: Zhenyuan Liu, Yu Guo, Xinyuan Li, Bernd Bickel, Ran Zhang,
- Abstract要約: 本稿では、画像に基づく新規ビュー合成技術である双方向ガウスプリミティブについて述べる。
提案手法はガウススプラッティングフレームワークに光の内在分解を取り入れ,3次元物体のリアルタイムリライティングを可能にする。
- 参考スコア(独自算出の注目度): 10.918133974256913
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique designed to represent and render 3D objects with surface and volumetric materials under dynamic illumination. Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects. To unify surface and volumetric material within a cohesive appearance model, we adopt a light- and view-dependent scattering representation via bidirectional spherical harmonics. Our model does not use a specific surface normal-related reflectance function, making it more compatible with volumetric representations like Gaussian splatting, where the normals are undefined. We demonstrate our method by reconstructing and rendering objects with complex materials. Using One-Light-At-a-Time (OLAT) data as input, we can reproduce photorealistic appearances under novel lighting conditions in real time.
- Abstract(参考訳): 動的照明下で3次元オブジェクトを表面・体積的に表現・描画するための画像ベース新規ビュー合成技術であるバイオリエント・ガウス・プリミティブスについて述べる。
提案手法はガウススプラッティングフレームワークに光の内在分解を取り入れ,3次元物体のリアルタイムリライティングを可能にする。
両方向球面高調波による光・視界依存散乱表現を採用することにより, 表面および体積物質を結合的な外観モデル内に統一する。
我々のモデルは、特定の曲面の正規関連反射関数を使用せず、正規が定義されていないガウススプラッティングのような体積表現とより互換性がある。
複雑な材料でオブジェクトを再構成・レンダリングすることで,本手法を実証する。
ワンライト・アット・ア・タイム(OLAT)データを入力として、新しい照明条件下での光リアルな外観をリアルタイムで再現することができる。
関連論文リスト
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - Subsurface Scattering for 3D Gaussian Splatting [10.990813043493642]
散乱材料を用いた物体の3次元再構成とリライティングは、表面下の複雑な光輸送のために大きな課題となる。
本稿では,マルチビューOLAT(1光1つ)データを用いてオブジェクトの形状を最適にするためのフレームワークを提案する。
本手法は,インタラクティブな速度で素材編集,リライティング,新しいビュー合成を可能にする。
論文 参考訳(メタデータ) (2024-08-22T10:34:01Z) - PRTGaussian: Efficient Relighting Using 3D Gaussians with Precomputed Radiance Transfer [13.869132334647771]
PRTGaussianはリアルタイムに再生可能な新規ビュー合成法である。
マルチビューOLATデータにガウスアンを組み込むことで,リアルタイムで自由視点のリライトを可能にする。
論文 参考訳(メタデータ) (2024-08-10T20:57:38Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
論文 参考訳(メタデータ) (2023-12-08T16:05:15Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
1枚の画像からアルベド, 正常, 深さ, 3次元の空間的変化を共同で推定する問題に対処する。
既存のほとんどの方法は、シーンの3D特性を無視して、画像から画像への変換としてタスクを定式化する。
本研究では3次元空間変動照明を定式化する統合学習ベースの逆フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-13T15:29:03Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
本稿では、RGB入力画像からジオメトリ、マテリアル、イルミネーションをゼロから再構築する逆レンダリングパイプラインPhySGを紹介します。
我々は合成データと実データの両方を用いて,新しい視点のレンダリングを可能にするだけでなく,物質や照明の物理ベースの外観編集を可能にすることを実証した。
論文 参考訳(メタデータ) (2021-04-01T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。