Enhancing Uplift Modeling in Multi-Treatment Marketing Campaigns: Leveraging Score Ranking and Calibration Techniques
- URL: http://arxiv.org/abs/2408.13628v2
- Date: Tue, 27 Aug 2024 12:53:22 GMT
- Title: Enhancing Uplift Modeling in Multi-Treatment Marketing Campaigns: Leveraging Score Ranking and Calibration Techniques
- Authors: Yoon Tae Park, Ting Xu, Mohamed Anany,
- Abstract summary: Uplift modeling is essential for optimizing marketing strategies by selecting individuals likely to respond positively to specific marketing campaigns.
This paper introduces a novel approach to uplift modeling in multi-treatment campaigns, leveraging score ranking and calibration techniques.
- Score: 1.9994596429890592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uplift modeling is essential for optimizing marketing strategies by selecting individuals likely to respond positively to specific marketing campaigns. This importance escalates in multi-treatment marketing campaigns, where diverse treatment is available and we may want to assign the customers to treatment that can make the most impact. While there are existing approaches with convenient frameworks like Causalml, there are potential spaces to enhance the effect of uplift modeling in multi treatment cases. This paper introduces a novel approach to uplift modeling in multi-treatment campaigns, leveraging score ranking and calibration techniques to improve overall performance of the marketing campaign. We review existing uplift models, including Meta Learner frameworks (S, T, X), and their application in real-world scenarios. Additionally, we delve into insights from multi-treatment studies to highlight the complexities and potential advancements in the field. Our methodology incorporates Meta-Learner calibration and a scoring rank-based offer selection strategy. Extensive experiment results with real-world datasets demonstrate the practical benefits and superior performance of our approach. The findings underscore the critical role of integrating score ranking and calibration techniques in refining the performance and reliability of uplift predictions, thereby advancing predictive modeling in marketing analytics and providing actionable insights for practitioners seeking to optimize their campaign strategies.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Multi-Scenario Combination Based on Multi-Agent Reinforcement Learning to Optimize the Advertising Recommendation System [38.501423778989704]
We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective.
Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales.
arXiv Detail & Related papers (2024-07-03T02:33:20Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Efficient Model-agnostic Alignment via Bayesian Persuasion [13.42367964190663]
We introduce a model-agnostic and lightweight Bayesian Persuasion Alignment framework.
In the persuasion process, the small model (Advisor) observes the information item (i.e., state) and persuades large models (Receiver) to elicit improved responses.
We show that GPT-2 can significantly improve the performance of various models, achieving an average enhancement of 16.1% in mathematical reasoning ability and 13.7% in code generation.
arXiv Detail & Related papers (2024-05-29T02:57:07Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - Interpretable Multiple Treatment Revenue Uplift Modeling [4.9571232160914365]
Uplift models support a firm's decision-making by predicting the change of a customer's behavior due to a treatment.
The paper extends corresponding approaches by developing uplift models for multiple treatments and continuous outcomes.
arXiv Detail & Related papers (2021-01-09T11:29:00Z) - Learning to rank for uplift modeling [13.37616530323223]
We investigate the potential of learning-to-rank techniques in the context of uplift modeling.
We propose a unified formalisation of different global uplift modeling measures in use today.
We introduce a new metric for learning-to-rank that focusses on optimizing the area under the uplift curve called the promoted cumulative gain (PCG)
arXiv Detail & Related papers (2020-02-14T07:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.