論文の概要: Theoretical framework for quantum associative memories
- arxiv url: http://arxiv.org/abs/2408.14272v1
- Date: Mon, 26 Aug 2024 13:46:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:51:27.171468
- Title: Theoretical framework for quantum associative memories
- Title(参考訳): 量子連想記憶の理論的枠組み
- Authors: Adrià Labay-Mora, Eliana Fiorelli, Roberta Zambrini, Gian Luca Giorgi,
- Abstract要約: 連想メモリ(Associative memory)とは、メモリと入力を関連付け、劣化したパターンの復元を目標とする能力である。
オープン量子系力学に基づく量子連想メモリのための包括的フレームワークを開発する。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Associative memory refers to the ability to relate a memory with an input and targets the restoration of corrupted patterns. It has been intensively studied in classical physical systems, as in neural networks where an attractor dynamics settles on stable solutions. Several extensions to the quantum domain have been recently reported, displaying different features. In this work, we develop a comprehensive framework for a quantum associative memory based on open quantum system dynamics, which allows us to compare existing models, identify the theoretical prerequisites for performing associative memory tasks, and extend it in different forms. The map that achieves an exponential increase in the number of stored patterns with respect to classical systems is derived. We establish the crucial role of symmetries and dissipation in the operation of quantum associative memory. Our theoretical analysis demonstrates the feasibility of addressing both quantum and classical patterns, orthogonal and non-orthogonal memories, stationary and metastable operating regimes, and measurement-based outputs. Finally, this opens up new avenues for practical applications in quantum computing and machine learning, such as quantum error correction or quantum memories.
- Abstract(参考訳): 連想メモリ(Associative memory)とは、メモリと入力を関連付け、劣化したパターンの復元を目標とする能力である。
古典的な物理系、例えば、誘引子力学が安定解に収束するニューラルネットワークにおいて、集中的に研究されている。
量子領域へのいくつかの拡張が最近報告され、異なる特徴が示されている。
本研究では、オープン量子システムダイナミクスに基づく量子連想メモリの包括的なフレームワークを開発し、既存のモデルを比較し、連想メモリタスクを実行する理論的前提条件を特定し、異なる形式で拡張する。
古典システムに対する記憶パターン数の指数関数的増加を実現するマップを導出する。
我々は,量子連想メモリの動作において,対称性と消散の重要な役割を担っている。
我々の理論的分析は、量子パターンと古典パターンの両方、直交記憶と非直交記憶、定常状態と準安定状態、および測定に基づく出力に対処できる可能性を示している。
最後に、量子エラー補正や量子メモリのような、量子コンピューティングと機械学習の実践的な応用のための新しい道を開く。
関連論文リスト
- Quantum reservoir computing on random regular graphs [0.0]
量子貯水池コンピューティング(QRC)は、入力駆動多体量子システムと古典的な学習技術を組み合わせた低複雑性学習パラダイムである。
我々は、情報局在化、動的量子相関、および乱れハミルトニアンの多体構造について研究する。
そこで本研究では、乱れたアナログ量子学習プラットフォームの最適設計のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
混合ワイル記号は、脳の過程を顕微鏡レベルで記述するために用いられる。
プロセスに関与する電磁場とフォノンモードは古典的または半古典的に扱われる。
ゼロ点量子効果は、各フィールドモードの温度を制御することで数値シミュレーションに組み込むことができる。
論文 参考訳(メタデータ) (2023-01-17T15:16:21Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Optimal storage capacity of quantum Hopfield neural networks [0.0]
多数のパターンで量子連想記憶を解析することは、難しいオープンな問題である。
本稿では,量子ニューラルネットワークモデルにおける最大記憶容量の評価方法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:21:21Z) - Quantum associative memory with a single driven-dissipative nonlinear
oscillator [0.0]
本稿では,単一駆動型量子発振器を用いた連想メモリの実現を提案する。
このモデルは、大局的に離散ニューロンベースのシステムの記憶能力を向上させることができる。
結合記憶容量は、リウヴィリア超作用素におけるスペクトルギャップの存在と本質的に関連していることを示す。
論文 参考訳(メタデータ) (2022-05-19T12:00:35Z) - Collisional open quantum dynamics with a generally correlated
environment: Exact solvability in tensor networks [0.0]
システム力学の自然なマルコフ埋め込みは,ネットワークの仮想指標によって補助的なシステムの役割を担っている。
その結果、量子光学と量子輸送の分野におけるテンソル・ネットワーク法が進展した。
論文 参考訳(メタデータ) (2022-02-09T19:48:17Z) - Phase diagram of quantum generalized Potts-Hopfield neural networks [0.0]
我々は,q-state Potts-Hopfield ニューラルネットワークのオープン量子一般化を導入し,解析する。
この多体系の力学はリンドブラッド型のマルコフマスター方程式によって定式化される。
論文 参考訳(メタデータ) (2021-09-21T12:48:49Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。