論文の概要: Spectrally Informed Learning of Fluid Flows
- arxiv url: http://arxiv.org/abs/2408.14407v1
- Date: Mon, 26 Aug 2024 16:49:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:21:54.073893
- Title: Spectrally Informed Learning of Fluid Flows
- Title(参考訳): 流体のスペクトルインフォームド学習
- Authors: Benjamin D. Shaffer, Jeremy R. Vorenberg, M. Ani Hsieh,
- Abstract要約: 本研究では, 学習過程における既知のスペクトル特性を利用して, 流体の低ランクモデル抽出のためのスペクトルインフォームド手法を提案する。
本手法の有効性を実証し, 原型流体のスペクトル特性に適合する学習モデルを構築した。
- 参考スコア(独自算出の注目度): 8.384075654211685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient fluid flow models are essential for applications relating to many physical phenomena including geophysical, aerodynamic, and biological systems. While these flows may exhibit rich and multiscale dynamics, in many cases underlying low-rank structures exist which describe the bulk of the motion. These structures tend to be spatially large and temporally slow, and may contain most of the energy in a given flow. The extraction and parsimonious representation of these low-rank dynamics from high-dimensional data is a key challenge. Inspired by the success of physics-informed machine learning methods, we propose a spectrally-informed approach to extract low-rank models of fluid flows by leveraging known spectral properties in the learning process. We incorporate this knowledge by imposing regularizations on the learned dynamics, which bias the training process towards learning low-frequency structures with corresponding higher power. We demonstrate the effectiveness of this method to improve prediction and produce learned models which better match the underlying spectral properties of prototypical fluid flows.
- Abstract(参考訳): 精密で効率的な流体流動モデルは、地球物理学、空気力学、生物学的システムを含む多くの物理現象に関する応用に不可欠である。
これらの流れはリッチでマルチスケールなダイナミクスを示すかもしれないが、多くの場合において、運動の大部分を記述した低ランク構造が存在する。
これらの構造は空間的に大きく、時間的に遅い傾向にあり、与えられた流れにほとんどのエネルギーを含むことがある。
高次元データからこれらの低ランクダイナミックスの抽出と類似表現は重要な課題である。
物理インフォームド機械学習手法の成功に触発されて,学習過程における既知のスペクトル特性を利用して,流体の低ランクモデル抽出のためのスペクトルインフォームドアプローチを提案する。
我々はこの知識を、学習力学に規則化を課し、学習過程を高出力の低周波構造学習に偏らせることによって取り入れる。
本手法の有効性を実証し, 原型流体のスペクトル特性に適合する学習モデルを構築した。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Generative Learning for Forecasting the Dynamics of Complex Systems [5.393540462038596]
本稿では,複雑なシステムのシミュレーションを高速化するための生成モデルについて紹介する。
その結果、生成学習は、計算コストを削減し、複雑なシステムの統計特性を正確に予測するための新たなフロンティアを提供することを示した。
論文 参考訳(メタデータ) (2024-02-27T02:44:40Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Physics-informed Reinforcement Learning for Perception and Reasoning
about Fluids [0.0]
本研究では,流体知覚と観測からの推論のための物理インフォームド強化学習戦略を提案する。
本研究では,コモディティカメラで自由表面を観察した未確認液体の追跡(知覚)と解析(推論)を行う手法を開発した。
論文 参考訳(メタデータ) (2022-03-11T07:01:23Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
データから動的モデルを学ぶことは、エンジニアリング設計、最適化、予測において重要な役割を果たす。
深層学習を用いて高忠実度力学系に対する低次元埋め込みを同定する。
論文 参考訳(メタデータ) (2021-11-25T10:09:00Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Designing Air Flow with Surrogate-assisted Phenotypic Niching [117.44028458220427]
品質多様性アルゴリズムであるサロゲート支援表現型ニッチを導入する。
計算に高価な表現型特徴を用いることで、大規模で多様な行動群を発見することができる。
本研究では,2次元流体力学最適化問題における気流の種類を明らかにする。
論文 参考訳(メタデータ) (2021-05-10T10:45:28Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。