論文の概要: Generative Learning for Forecasting the Dynamics of Complex Systems
- arxiv url: http://arxiv.org/abs/2402.17157v1
- Date: Tue, 27 Feb 2024 02:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 18:03:03.843212
- Title: Generative Learning for Forecasting the Dynamics of Complex Systems
- Title(参考訳): 複雑系のダイナミクス予測のための生成学習
- Authors: Han Gao, Sebastian Kaltenbach, Petros Koumoutsakos
- Abstract要約: 本稿では,複雑なシステムのシミュレーションを高速化するための生成モデルについて紹介する。
その結果、生成学習は、計算コストを削減し、複雑なシステムの統計特性を正確に予測するための新たなフロンティアを提供することを示した。
- 参考スコア(独自算出の注目度): 5.393540462038596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce generative models for accelerating simulations of complex
systems through learning and evolving their effective dynamics. In the proposed
Generative Learning of Effective Dynamics (G-LED), instances of high
dimensional data are down sampled to a lower dimensional manifold that is
evolved through an auto-regressive attention mechanism. In turn, Bayesian
diffusion models, that map this low-dimensional manifold onto its corresponding
high-dimensional space, capture the statistics of the system dynamics. We
demonstrate the capabilities and drawbacks of G-LED in simulations of several
benchmark systems, including the Kuramoto-Sivashinsky (KS) equation,
two-dimensional high Reynolds number flow over a backward-facing step, and
simulations of three-dimensional turbulent channel flow. The results
demonstrate that generative learning offers new frontiers for the accurate
forecasting of the statistical properties of complex systems at a reduced
computational cost.
- Abstract(参考訳): 学習と効果的なダイナミクスを進化させることによって複雑なシステムのシミュレーションを加速する生成モデルを提案する。
g-led(generative learning of effective dynamics)では、高次元データの例を、自己回帰的注意機構によって進化する低次元多様体にサンプリングする。
逆に、この低次元多様体を対応する高次元空間に写像するベイズ拡散モデルは、系の力学の統計を捉える。
我々は,倉本-シヴァシンスキー方程式 (KS) や2次元高レイノルズ数流,3次元乱流流のシミュレーションなど,いくつかのベンチマークシステムにおけるG-LEDの性能と欠点を実証する。
その結果、生成学習は計算コストを削減した複雑なシステムの統計特性を正確に予測するための新たなフロンティアを提供することを示した。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Generative Learning of the Solution of Parametric Partial Differential Equations Using Guided Diffusion Models and Virtual Observations [4.798951413107239]
本研究では,高次元パラメトリックシステムをモデル化するための生成学習フレームワークを提案する。
我々は,部分微分方程式(PDE)で記述されたシステムについて,構造的あるいは非構造的グリッドで識別する。
論文 参考訳(メタデータ) (2024-07-31T20:52:33Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Recurrent Deep Kernel Learning of Dynamical Systems [0.5825410941577593]
デジタル双対は計算効率の低い低次モデル(ROM)を必要とし、物理的資産の複雑な力学を正確に記述することができる。
データから低次元の潜伏空間を発見するために,データ駆動型非侵入型深層学習法(SVDKL)を提案する。
その結果,本フレームワークは, (i) 測定値の復調と再構成, (ii) システム状態のコンパクトな表現の学習, (iii) 低次元潜在空間におけるシステム進化の予測, (iv) 不確実性をモデル化できることがわかった。
論文 参考訳(メタデータ) (2024-05-30T07:49:02Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
データから動的モデルを学ぶことは、エンジニアリング設計、最適化、予測において重要な役割を果たす。
深層学習を用いて高忠実度力学系に対する低次元埋め込みを同定する。
論文 参考訳(メタデータ) (2021-11-25T10:09:00Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。