X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
- URL: http://arxiv.org/abs/2408.15172v1
- Date: Tue, 27 Aug 2024 16:10:21 GMT
- Title: X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
- Authors: Hanjia Lyu, Ryan Rossi, Xiang Chen, Md Mehrab Tanjim, Stefano Petrangeli, Somdeb Sarkhel, Jiebo Luo,
- Abstract summary: Large Language Models (LLMs) and Large Multimodal Models (LMMs) have been shown to enhance the effectiveness of enriching item descriptions.
This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, to address limitations by prompting LMMs to explicitly identify and reconcile supportive and conflicting information between text and images.
- Score: 47.96737683498274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) and Large Multimodal Models (LMMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting LMMs to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually richer item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Additionally, we evaluate the generalizability of our framework across different LMM backbones and the robustness of the prompting strategies, offering insights for optimization. This work underscores the importance of integrating multimodal information and presents a novel solution for improving item understanding in multimodal recommendation systems.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts [15.920623515602038]
This paper proposes GANPrompt, a multi-dimensional large language model prompt diversity framework based on Generative Adversarial Networks (GANs)
GANPrompt first trains a generator capable of producing diverse prompts by analysing multidimensional user behavioural data.
These diverse prompts are then used to train the LLM to improve its performance in the face of unseen prompts.
arXiv Detail & Related papers (2024-08-19T03:13:20Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques.
The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation.
arXiv Detail & Related papers (2024-08-08T04:31:29Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
We introduce Bundle-MLLM, a novel framework that fine-tunes large language models (LLMs) through a hybrid item tokenization approach.
Specifically, we integrate textual, media, and relational data into a unified tokenization, introducing a soft separation token to distinguish between textual and non-textual tokens.
We propose a progressive optimization strategy that fine-tunes LLMs for disentangled objectives: 1) learning bundle patterns and 2) enhancing multimodal semantic understanding specific to product bundling.
arXiv Detail & Related papers (2024-07-16T13:30:14Z) - Towards Bridging the Cross-modal Semantic Gap for Multi-modal Recommendation [12.306686291299146]
Multi-modal recommendation greatly enhances the performance of recommender systems.
Most existing multi-modal recommendation models exploit multimedia information propagation processes to enrich item representations.
We propose a novel framework to bridge the semantic gap between modalities and extract fine-grained multi-view semantic information.
arXiv Detail & Related papers (2024-07-07T15:56:03Z) - POEM: Interactive Prompt Optimization for Enhancing Multimodal Reasoning of Large Language Models [28.072184039405784]
We present POEM, a visual analytics system to facilitate efficient prompt engineering for large language models (LLMs)
The system enables users to explore the interaction patterns across modalities at varying levels of detail for a comprehensive understanding of the multimodal knowledge elicited by various prompts.
arXiv Detail & Related papers (2024-06-06T08:21:30Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
We propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem.
In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach.
Finally, we propose Multimodal Interaction module to address the unalignment nature of multimodal data.
arXiv Detail & Related papers (2022-11-07T13:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.