ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution
- URL: http://arxiv.org/abs/2408.15993v2
- Date: Mon, 10 Mar 2025 20:45:11 GMT
- Title: ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution
- Authors: Sungduk Yu, Brian L. White, Anahita Bhiwandiwalla, Musashi Hinck, Matthew Lyle Olson, Yaniv Gurwicz, Raanan Y. Rohekar, Tung Nguyen, Vasudev Lal,
- Abstract summary: ClimDetect is a standardized dataset comprising 1.17M daily climate snapshots paired with target climate change indicator variables.<n>The dataset is curated from both CMIP6 climate model simulations and real-world observation-assimilated reanalysis datasets.<n>We also explore the application of vision transformers (ViT) to climate data -- a novel approach that, to our knowledge, has not been attempted before for climate change detection tasks.
- Score: 6.919867656801517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and attributing temperature increases driven by climate change is crucial for understanding global warming and informing adaptation strategies. However, distinguishing human-induced climate signals from natural variability remains challenging for traditional detection and attribution (D&A) methods, which rely on identifying specific "fingerprints" -- spatial patterns expected to emerge from external forcings such as greenhouse gas emissions. Deep learning offers promise in discerning these complex patterns within expansive spatial datasets, yet the lack of standardized protocols has hindered consistent comparisons across studies. To address this gap, we introduce ClimDetect, a standardized dataset comprising 1.17M daily climate snapshots paired with target climate change indicator variables. The dataset is curated from both CMIP6 climate model simulations and real-world observation-assimilated reanalysis datasets (ERA5, JRA-3Q, and MERRA-2), and is designed to enhance model accuracy in detecting climate change signals. ClimDetect integrates various input and target variables used in previous research, ensuring comparability and consistency across studies. We also explore the application of vision transformers (ViT) to climate data -- a novel approach that, to our knowledge, has not been attempted before for climate change detection tasks. Our open-access data serve as a benchmark for advancing climate science by enabling end-to-end model development and evaluation. ClimDetect is publicly accessible via Hugging Face dataset repository at: https://huggingface.co/datasets/ClimDetect/ClimDetect.
Related papers
- ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
We contribute a multi-modal climate benchmark, i.e., ClimateBench-M, which aligns time series climate data from ERA5, extreme weather events data from NOAA, and satellite image data from NASA.
Under each data modality, we also propose a simple but strong generative method that could produce competitive performance in weather forecasting, thunderstorm alerts, and crop segmentation tasks.
arXiv Detail & Related papers (2025-04-10T02:22:23Z) - Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
We introduce a new task named Change Detection Question Answering and Grounding (CDQAG)
CDQAG extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence.
We construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks.
arXiv Detail & Related papers (2024-10-31T11:20:13Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Vision-Language Models Meet Meteorology: Developing Models for Extreme Weather Events Detection with Heatmaps [30.771706309741656]
Real-time detection and prediction of extreme weather protect human lives and infrastructure.
Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS)
Our research redefines Extreme Weather Events Detection (EWED) by framing it as a Visual Question Answering (VQA) problem.
arXiv Detail & Related papers (2024-06-14T08:46:44Z) - Predicting unobserved climate time series data at distant areas via spatial correlation using reservoir computing [5.008022566317949]
This study focuses on a prediction of climatic elements, specifically near-surface temperature and pressure, at a target location apart from a data observation point.
Our results show that the accuracy of the predictions degrades with the distance between the observation and target locations.
arXiv Detail & Related papers (2024-06-05T08:39:10Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Characterizing climate pathways using feature importance on echo state
networks [0.0]
echo state network (ESN) is a computationally efficient neural network variation designed for temporal data.
ESNs are non-interpretable black-box models, which poses a hurdle for understanding variable relationships.
We conduct a simulation study to assess and compare the feature importance techniques, and we demonstrate the approach on reanalysis climate data.
arXiv Detail & Related papers (2023-10-12T16:55:04Z) - Multi-variable Hard Physical Constraints for Climate Model Downscaling [17.402215838651557]
Global Climate Models (GCMs) are the primary tool to simulate climate evolution and assess the impacts of climate change.
They often operate at a coarse spatial resolution that limits their accuracy in reproducing local-scale phenomena.
This study investigates the scope of this problem and, through an application on temperature, lays the foundation for a framework introducing multi-variable hard constraints.
arXiv Detail & Related papers (2023-08-02T11:42:02Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Encoding Causal Macrovariables [0.0]
In many scientific disciplines, coarse-grained causal models are used to explain and predict the dynamics of more fine-grained systems.
This work introduces a novel algorithmic approach that is inspired by a new characterisation of causal macrovariables as information bottlenecks between microstates.
arXiv Detail & Related papers (2021-11-29T17:25:11Z) - Controlling Weather Field Synthesis Using Variational Autoencoders [0.0]
This paper investigates how mapping climate data to a known distribution might help explore such biases.
We experimented using a monsoon-affected precipitation dataset from southwest In-dia, which should give a roughly stable pattern ofrainy days.
We reportcompelling results showing that mapping complexweather data to a known distribution implementsan efficient control for weather field synthesis to-wards more (or less) extreme scenarios.
arXiv Detail & Related papers (2021-07-30T19:17:30Z) - HECT: High-Dimensional Ensemble Consistency Testing for Climate Models [1.7587442088965226]
Climate models play a crucial role in understanding the effect of environmental changes on climate to help mitigate climate risks and inform decisions.
Large global climate models such as the Community Earth System Model (CESM), are very complex with millions of lines of code describing interactions of the atmosphere, land, oceans, and ice.
Our work uses probabilistics like tree-based algorithms and deep neural networks to perform a statistically rigorous goodness-of-fit test of high-dimensional and man-made data.
arXiv Detail & Related papers (2020-10-08T15:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.