Structured Event Reasoning with Large Language Models
- URL: http://arxiv.org/abs/2408.16098v1
- Date: Wed, 28 Aug 2024 19:03:41 GMT
- Title: Structured Event Reasoning with Large Language Models
- Authors: Li Zhang,
- Abstract summary: Reasoning about real-life events is a unifying challenge in AI and NLP.
I show that end-to-end LLMs still systematically fail to reason about complex events.
I propose three general approaches to use LLMs in conjunction with a structured representation of events.
- Score: 4.897267974042842
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reasoning about real-life events is a unifying challenge in AI and NLP that has profound utility in a variety of domains, while fallacy in high-stake applications could be catastrophic. Able to work with diverse text in these domains, large language models (LLMs) have proven capable of answering questions and solving problems. However, I show that end-to-end LLMs still systematically fail to reason about complex events, and they lack interpretability due to their black-box nature. To address these issues, I propose three general approaches to use LLMs in conjunction with a structured representation of events. The first is a language-based representation involving relations of sub-events that can be learned by LLMs via fine-tuning. The second is a semi-symbolic representation involving states of entities that can be predicted and leveraged by LLMs via few-shot prompting. The third is a fully symbolic representation that can be predicted by LLMs trained with structured data and be executed by symbolic solvers. On a suite of event reasoning tasks spanning common-sense inference and planning, I show that each approach greatly outperforms end-to-end LLMs with more interpretability. These results suggest manners of synergy between LLMs and structured representations for event reasoning and beyond.
Related papers
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - What Do Language Models Learn in Context? The Structured Task Hypothesis [89.65045443150889]
Large language models (LLMs) learn a novel task from in-context examples presented in a demonstration, termed in-context learning (ICL)
One popular hypothesis explains ICL by task selection.
Another popular hypothesis is that ICL is a form of meta-learning, i.e., the models learn a learning algorithm at pre-training time and apply it to the demonstration.
arXiv Detail & Related papers (2024-06-06T16:15:34Z) - Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs [63.29737699997859]
Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning.
In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation.
arXiv Detail & Related papers (2024-05-26T21:31:59Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
We investigate the role of semantic representations in the era of large language models (LLMs)
We propose an AMR-driven chain-of-thought prompting method, which we call AMRCoT.
We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions.
arXiv Detail & Related papers (2024-05-02T17:32:59Z) - Can LLMs Compute with Reasons? [4.995189458714599]
Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers.
We propose an "Inductive Learning" approach utilizing a distributed network of Small LangSLMs.
arXiv Detail & Related papers (2024-02-19T12:04:25Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
There is considerable confusion about the role of Large Language Models (LLMs) in planning and reasoning tasks.
We argue that auto-regressive LLMs cannot, by themselves, do planning or self-verification.
We present a vision of bf LLM-Modulo Frameworks that combine the strengths of LLMs with external model-based verifiers.
arXiv Detail & Related papers (2024-02-02T14:43:18Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
Event relation extraction is a challenging task that demands thorough semantic understanding and rigorous logical reasoning.
In this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in understanding and applying event relation logic.
Our study reveals that LLMs are not logically consistent reasoners, which results in their suboptimal performance on tasks that need rigorous reasoning.
arXiv Detail & Related papers (2023-10-13T14:53:06Z) - Event knowledge in large language models: the gap between the impossible
and the unlikely [46.540380831486125]
We show that pre-trained large language models (LLMs) possess substantial event knowledge.
They almost always assign higher likelihood to possible vs. impossible events.
However, they show less consistent preferences for likely vs. unlikely events.
arXiv Detail & Related papers (2022-12-02T23:43:18Z) - ThinkSum: Probabilistic reasoning over sets using large language models [18.123895485602244]
We propose a two-stage probabilistic inference paradigm, ThinkSum, which reasons over sets of objects or facts in a structured manner.
We demonstrate the possibilities and advantages of ThinkSum on the BIG-bench suite of LLM evaluation tasks.
arXiv Detail & Related papers (2022-10-04T00:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.