論文の概要: Quantum Programming Without the Quantum Physics
- arxiv url: http://arxiv.org/abs/2408.16234v1
- Date: Thu, 29 Aug 2024 03:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 15:05:40.522020
- Title: Quantum Programming Without the Quantum Physics
- Title(参考訳): 量子物理学のない量子プログラミング
- Authors: Jun Inoue,
- Abstract要約: 量子プログラミングのパラダイムとして,すべてのデータが古典的データに親しみやすい量子プログラミングパラダイムを提案する。
古典的でない唯一の要素は、負の確率で結果を返す乱数生成器である。
- 参考スコア(独自算出の注目度): 0.08158530638728499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum programming paradigm where all data are familiar classical data, and the only non-classical element is a random number generator that can return results with negative probability. Currently, the vast majority of quantum programming languages instead work with quantum data types made up of qubits. The description of their behavior relies on heavy linear algebra and many interdependent concepts and intuitions from quantum physics, which takes dedicated study to understand. We demonstrate that the proposed view of quantum programming explains its central concepts and constraints in more accessible, computationally relevant terms. This is achieved by systematically reducing everything to the existence of that negative-probability random generator, avoiding mention of advanced physics as much as possible. This makes quantum programming more accessible to programmers without a deep background in physics or linear algebra. The bulk of this paper is written with such an audience in mind. As a working vehicle, we lay out a simple quantum programming language under this paradigm, showing that not only can it express all quantum programs, it also naturally captures the semantics of measurement without ever mentioning qubits or collapse. The language is proved to be implementable and universal.
- Abstract(参考訳): 量子プログラミングのパラダイムとして、すべてのデータがよく知られた古典的データであり、唯一の非古典的要素は、負の確率で結果を返却できる乱数生成器である。
現在、ほとんどの量子プログラミング言語は、キュービットからなる量子データ型を扱う。
それらの振る舞いの記述は、重線型代数と多くの相互依存の概念と量子物理学からの直観に依存しており、その理解には専用の研究が必要である。
提案する量子プログラミングの観点は、その中心的な概念と制約を、よりアクセスしやすく、計算に関係のある用語で説明できる。
これは、全てを、その負確率ランダムジェネレータの存在に体系的に還元し、可能な限り高度な物理学の言及を避けることで達成される。
これにより、物理学や線形代数の深い背景なしに、プログラマにとって量子プログラミングがよりアクセスしやすくなる。
この論文の大部分は、そのような聴衆を念頭に置いて書かれている。
動作する車両として、このパラダイムの下で単純な量子プログラミング言語をレイアウトし、全ての量子プログラムを表現できるだけでなく、量子ビットや崩壊を言うことなく、自然に測定の意味を捉えていることを示す。
言語は実装可能で普遍的であることが証明されている。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Quantum types: going beyond qubits and quantum gates [0.0]
この記事では、高レベルの抽象化の必要性を概説し、Rhymeという開発者フレンドリーなプログラミング言語でそれらをいくつか提案する。
新しい量子型は、ビット、整数、フロート、文字、配列、文字列を含む古典型の拡張である。
論文 参考訳(メタデータ) (2024-01-26T18:54:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum information and beyond -- with quantum candies [0.0]
我々はここで「クエンタム・キャンディー」を調査し、拡張し、拡張する(Jacobsによって発明された)。
量子」キャンディーは量子ビット、相補性、非閉鎖原理、絡み合いなど、量子情報の基本的な概念を記述している。
これらの実演は親しみやすい方法で行われ、これは高校生に説明できるが、重ね合わせの難解な概念や数学は使わない。
論文 参考訳(メタデータ) (2021-09-30T16:05:33Z) - Playing with a Quantum Computer [0.0]
量子物理学の入門講座において,量子コンピュータの直接的かつ直接的な利用方法を示す。
量子的優位性を提供しながら、単純で分かりやすい問題を解決するアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-08-13T14:33:45Z) - On quantum neural networks [91.3755431537592]
量子ニューラルネットワークの概念は、その最も一般的な関数の観点から定義されるべきである。
我々の推論は、量子力学におけるファインマン経路積分定式化の利用に基づいている。
論文 参考訳(メタデータ) (2021-04-12T18:30:30Z) - Quantum Technology for Economists [0.2867517731896504]
量子コンピューティングと量子通信の基本概念について論じる。
我々は、量子通信文学の初期の発明である量子マネーの概要を提供する。
我々は、経済モデルの解法と推定に使われたアルゴリズムのために特定された既存の全ての量子スピードアップについてレビューする。
論文 参考訳(メタデータ) (2020-12-08T15:14:24Z) - Quantum supremacy in driven quantum many-body systems [0.0]
一般周期駆動型量子多体系において量子超越性が得られることを示す。
我々の提案は、大規模な量子プラットフォームが量子超越性を実証し、ベンチマークする方法を開く。
論文 参考訳(メタデータ) (2020-02-27T07:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。