論文の概要: sEMG-Driven Physics-Informed Gated Recurrent Networks for Modeling Upper Limb Multi-Joint Movement Dynamics
- arxiv url: http://arxiv.org/abs/2408.16599v2
- Date: Mon, 17 Feb 2025 11:20:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:03:59.706030
- Title: sEMG-Driven Physics-Informed Gated Recurrent Networks for Modeling Upper Limb Multi-Joint Movement Dynamics
- Title(参考訳): 上肢多関節運動のモデリングのためのsEMG駆動物理インフォームドGated Recurrent Networks
- Authors: Rajnish Kumar, Anand Gupta, Suriya Prakash Muthukrishnan, Lalan Kumar, Sitikantha Roy,
- Abstract要約: 外骨格とリハビリテーションシステムは、適応的なヒューマン・マシン・インタフェースを用いて、人間の強さと回復を改善する可能性がある。
本稿では,SEMGデータから多関節運動のダイナミクスを予測する新しいモデルPiGRNを提案する。
PiGRN は Gated Recurrent Unit (GRU) を使用して時系列のsEMG入力を処理し、マルチジョイントキネマティクスと外部負荷を推定し、トレーニング中に物理ベースの制約を取り入れながら関節トルクを予測する。
- 参考スコア(独自算出の注目度): 5.524068837259551
- License:
- Abstract: Exoskeletons and rehabilitation systems have the potential to improve human strength and recovery by using adaptive human-machine interfaces. Achieving precise and responsive control in these systems depends on accurately estimating joint movement dynamics, such as joint angle, velocity, acceleration, external mass, and torque. While machine learning (ML) approaches have been employed to predict joint kinematics from surface electromyography (sEMG) data, traditional ML models often struggle to generalize across dynamic movements. In contrast, physics-informed neural networks integrate biomechanical principles, but their effectiveness in predicting full movement dynamics has not been thoroughly explored. To address this, we introduce the Physics-informed Gated Recurrent Network (PiGRN), a novel model designed to predict multi-joint movement dynamics from sEMG data. PiGRN uses a Gated Recurrent Unit (GRU) to process time-series sEMG inputs, estimate multi-joint kinematics and external loads, and predict joint torque while incorporating physics-based constraints during training. Experimental validation, using sEMG data from five participants performing elbow flexion-extension tasks with 0 kg, 2 kg, and 4 kg loads, showed that PiGRN accurately predicted joint torques for 10 novel movements. RMSE values ranged from 4.02\% to 11.40\%, with correlation coefficients between 0.87 and 0.98. These results underscore PiGRN's potential for real-time applications in exoskeletons and rehabilitation. Future work will focus on expanding datasets, improving musculoskeletal models, and investigating unsupervised learning approaches.
- Abstract(参考訳): 外骨格とリハビリテーションシステムは、適応的なヒューマン・マシン・インタフェースを用いて、人間の強さと回復を改善する可能性がある。
これらのシステムにおける精密かつ応答的な制御は、関節角度、速度、加速度、外質量、トルクなどの関節運動のダイナミクスを正確に推定することに依存する。
機械学習(ML)アプローチは表面筋電図(sEMG)データから関節キネマティクスを予測するのに使われてきたが、従来のMLモデルは動的運動をまたいだ一般化に苦慮することが多い。
対照的に、物理インフォームドニューラルネットワークは生体力学の原理を統合しているが、完全な運動力学を予測する効果は十分に研究されていない。
これを解決するために、sEMGデータから多関節運動のダイナミクスを予測するために設計された新しいモデルPiGRN(Physical-informed Gated Recurrent Network)を導入する。
PiGRN は Gated Recurrent Unit (GRU) を使用して時系列のsEMG入力を処理し、マルチジョイントキネマティクスと外部負荷を推定し、トレーニング中に物理ベースの制約を取り入れながら関節トルクを予測する。
肘屈曲伸展を0 kg, 2 kg, 4 kg負荷で行う5人の被験者のsEMGデータを用いて, PiGRNが10個の新しい運動の関節トルクを正確に予測した。
RMSE値は4.02\%から11.40\%であり、相関係数は0.87から0.98である。
これらの結果は、外骨格とリハビリテーションにおけるPiGRNのリアルタイム応用の可能性を強調している。
今後の研究は、データセットの拡大、筋骨格モデルの改善、教師なし学習アプローチの調査に注力する。
関連論文リスト
- Deep Learning for Motion Classification in Ankle Exoskeletons Using Surface EMG and IMU Signals [0.8388591755871735]
足関節外骨格は、移動性を高め、転倒リスクを減らす可能性に対してかなりの関心を集めている。
本稿では、3つの慣性計測ユニット(IMU)と8つの表面筋電図センサ(sEMG)を統合する新しい動き予測フレームワークを提案する。
その結果、畳み込みニューラルネットワーク(CNN)は5つの動作タスクのデータセット上でLSTM(Long Short-Term Memory)ネットワークをわずかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-25T10:51:40Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals
Across Varied Loads with a Physics-Informed Neural Network [0.0]
PINNモデルは、フィードフォワードニューラルネットワーク(ANN)とジョイントトルクモデルを組み合わせることで構成される。
PINNモデルのトレーニングデータセットは、EMGと4つの異なる被験者から収集された時間データを含む。
その結果,関節角度予測では58%から83%の相関が認められた。
論文 参考訳(メタデータ) (2023-11-28T16:55:11Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems [1.978587235008588]
本研究は筋骨格運動(MSK)の同時予測のための物理インフォームド・リカレントニューラルネットワーク(MR PI-RNN)を提案する。
提案手法は、高速ウェーブレット変換を用いて、混合周波数入力sEMGを分解し、ジョイントモーション信号をネスト多重解像度信号に出力する。
このフレームワークはまた、被験者の運動学データと生理的に整合した筋肉パラメータを識別することも可能である。
論文 参考訳(メタデータ) (2023-05-26T02:51:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。