A novel fusion of Sentinel-1 and Sentinel-2 with climate data for crop phenology estimation using Machine Learning
- URL: http://arxiv.org/abs/2409.00020v2
- Date: Mon, 12 May 2025 09:49:26 GMT
- Title: A novel fusion of Sentinel-1 and Sentinel-2 with climate data for crop phenology estimation using Machine Learning
- Authors: Shahab Aldin Shojaeezadeh, Abdelrazek Elnashar, Tobias Karl David Weber,
- Abstract summary: We train a Machine Learning (ML) LightGBM model to predict 13 phenological stages for eight major crops across Germany at 20 m scale.<n>At national scale, predicted phenology resulted in a reasonable precision of R2 > 0.43 and a low Mean Absolute Error of 6 days.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crop phenology describes the physiological development stages of crops from planting to harvest which is valuable information for decision makers to plan and adapt agricultural management strategies. In the era of big Earth observation data ubiquity, attempts have been made to accurately detect crop phenology using Remote Sensing (RS) and high resolution weather data. However, most studies have focused on large scale predictions of phenology or developed methods which are not adequate to help crop modeler communities on leveraging Sentinel-1 and Sentinal-2 data and fusing them with high resolution climate data, using a novel framework. For this, we trained a Machine Learning (ML) LightGBM model to predict 13 phenological stages for eight major crops across Germany at 20 m scale. Observed phonologies were taken from German national phenology network (German Meteorological Service; DWD) between 2017 and 2021. We proposed a thorough feature selection analysis to find the best combination of RS and climate data to detect phenological stages. At national scale, predicted phenology resulted in a reasonable precision of R2 > 0.43 and a low Mean Absolute Error of 6 days, averaged over all phenological stages and crops. The spatio-temporal analysis of the model predictions demonstrates its transferability across different spatial and temporal context of Germany. The results indicated that combining radar sensors with climate data yields a very promising performance for a multitude of practical applications. Moreover, these improvements are expected to be useful to generate highly valuable input for crop model calibrations and evaluations, facilitate informed agricultural decisions, and contribute to sustainable food production to address the increasing global food demand.
Related papers
- Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data [1.546169961420396]
The AgroLens project endeavors to develop Machine Learning-based methodologies to predict soil nutrient levels without reliance on laboratory tests.
The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery.
Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction.
arXiv Detail & Related papers (2025-03-28T09:44:32Z) - Crop Yield Time-Series Data Prediction Based on Multiple Hybrid Machine Learning Models [6.10631040784366]
This study focuses on crop yield Time-Series Data prediction.
Considering the crucial significance of agriculture in the global economy and social stability, this research uses a dataset containing multiple crops, multiple regions, and data over many years.
Multiple hybrid machine learning models such as Linear Regression, Random Forest, Gradient Boost, XGBoost, KNN, Decision Tree, and Bagging Regressor are adopted for yield prediction.
arXiv Detail & Related papers (2025-01-21T23:41:33Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions [20.44172558372343]
CropNet dataset is the first terabyte-sized, publicly available, and multi-modal dataset specifically targeting climate change-aware crop yield predictions.
CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR, and USDA Cropd dataset, for over 2200 U.S. counties spanning 6 years.
arXiv Detail & Related papers (2024-06-10T07:54:56Z) - Prediction of soil fertility parameters using USB-microscope imagery and portable X-ray fluorescence spectrometry [3.431158134976364]
This study investigated the use of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis for rapid soil fertility assessment.
A total of 1,133 soil samples from diverse agro-climatic zones in Eastern India were analyzed.
arXiv Detail & Related papers (2024-04-17T17:57:20Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Innovations in Agricultural Forecasting: A Multivariate Regression Study on Global Crop Yield Prediction [0.0]
This study implements 6 regression models to predict crop yields in 37 developing countries over 27 years.
Given 4 key training parameters, insecticides (tonnes), rainfall (mm), temperature (Celsius), and yield (hg/ha), it was found that our Random Forest Regression model achieved a determination coefficient (r2) of 0.94, with a margin of error (ME) of.03.
arXiv Detail & Related papers (2023-12-04T18:45:28Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Fuzzy clustering for the within-season estimation of cotton phenology [0.0]
We propose a new approach for the within-season phenology estimation for cotton at the field level.
Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data.
In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece.
arXiv Detail & Related papers (2022-11-25T13:30:57Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
We propose a pipeline to process remote sensing images into feature-based representations that allow the employment of Extreme Gradient Boosting (XGBoost) for yield prediction.
A comparative evaluation of soybean yield prediction within the United States shows promising prediction accuracies compared to state-of-the-art yield prediction systems based on Deep Learning.
arXiv Detail & Related papers (2022-08-26T12:48:18Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
We use historical performance records from Uniform Soybean Tests (UST) in North America spanning 13 years of data to build a Long Short Term Memory - Recurrent Neural Network based model to dissect and predict genotype response in multiple environments.
We deploy this deep learning framework as a 'hypotheses generation tool' to unravel GxExM relationships.
We envision broad applicability of this approach (via conducting sensitivity analysis and "what-if" scenarios) for soybean and other crop species under different climatic conditions.
arXiv Detail & Related papers (2020-06-24T16:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.