論文の概要: Understanding Literary Texts by LLMs: A Case Study of Ancient Chinese Poetry
- arxiv url: http://arxiv.org/abs/2409.00060v2
- Date: Wed, 11 Sep 2024 07:51:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:02:24.945784
- Title: Understanding Literary Texts by LLMs: A Case Study of Ancient Chinese Poetry
- Title(参考訳): LLMによる文学文章の理解--古漢詩を事例として
- Authors: Cheng Zhao, Bin Wang, Zhen Wang,
- Abstract要約: 詩、ジョーク、短編小説などのジャンルにおいて、多くのAIツールが登場し、新たな視点を提供する。
文学作品を評価することは、しばしば複雑で、完全に定量化することは困難であり、AI創造のさらなる発展を妨げている。
本稿では,大規模言語モデルの観点から,文学テキストのミステリーを探究する。
- 参考スコア(独自算出の注目度): 9.970908656435066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The birth and rapid development of large language models (LLMs) have caused quite a stir in the field of literature. Once considered unattainable, AI's role in literary creation is increasingly becoming a reality. In genres such as poetry, jokes, and short stories, numerous AI tools have emerged, offering refreshing new perspectives. However, it's difficult to further improve the quality of these works. This is primarily because understanding and appreciating a good literary work involves a considerable threshold, such as knowledge of literary theory, aesthetic sensibility, interdisciplinary knowledge. Therefore, authoritative data in this area is quite lacking. Additionally, evaluating literary works is often complex and hard to fully quantify, which directly hinders the further development of AI creation. To address this issue, this paper attempts to explore the mysteries of literary texts from the perspective of LLMs, using ancient Chinese poetry as an example for experimentation. First, we collected a variety of ancient poems from different sources and had experts annotate a small portion of them. Then, we designed a range of comprehension metrics based on LLMs to evaluate all these poems. Finally, we analyzed the correlations and differences between various poem collections to identify literary patterns. Through our experiments, we observed a series of enlightening phenomena that provide technical support for the future development of high-level literary creation based on LLMs.
- Abstract(参考訳): 大規模言語モデル(LLMs)の誕生と急速な発展は、文学の分野で大きな騒ぎを引き起こしている。
文芸創造におけるAIの役割は、かつては達成不可能と考えられていたが、次第に現実化しつつある。
詩、ジョーク、短編小説などのジャンルにおいて、多くのAIツールが登場し、新たな視点を提供する。
しかし、これらの作品の質をさらに改善することは困難である。
これは主に、優れた文学作品の理解と評価には、文学理論の知識、審美的感受性、学際的知識など、かなりのしきい値が伴うためである。
そのため、この地域の権威的なデータは欠落している。
さらに、文学作品を評価することはしばしば複雑で、完全に定量化することは困難であり、AI創造のさらなる発展を妨げている。
この問題に対処するために,古漢詩を実験の例として用い,LLMの観点から文学テキストの謎を探究する。
まず、異なる資料からさまざまな古詩を採集し、その一部に専門家が注釈を付けた。
そこで我々は,これらすべての詩を評価するために,LLMに基づく様々な理解尺度を設計した。
最後に,様々な詩集の相互関係と相違点を分析し,文体パターンを同定した。
実験を通じて,LLMをベースとしたハイレベルな文学創作の技術的発展を支援する一連の啓蒙現象を観察した。
関連論文リスト
- A Perspective on Literary Metaphor in the Context of Generative AI [0.6445605125467572]
本研究は,文芸メタファーの役割と,その能力について考察する。
原語の含意が文質を向上させるかどうかを検討するため,アフリカーンスでLSTMに基づく言語モデルを訓練した。
本論文は,美的価値,解釈,評価に関する思考的疑問を提起する。
論文 参考訳(メタデータ) (2024-09-02T08:27:29Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets [3.0040661953201475]
大規模言語モデル(LLM)が詩を生成、認識できるようになった。
我々はLLMが英語詩の1つの側面をいかに認識するかを評価するタスクを開発する。
我々は,現在最先端のLLMが,一般的な文体と一般的でない文体の両方を識別できることを示す。
論文 参考訳(メタデータ) (2024-06-27T05:36:53Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
本稿では,大言語モデル(LLM)をベースとした多エージェントフレームワークを,TransAgentsという企業として実装した。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
論文 参考訳(メタデータ) (2024-05-20T05:55:08Z) - LFED: A Literary Fiction Evaluation Dataset for Large Language Models [58.85989777743013]
元々は中国語で書かれたか、中国語に翻訳された95の文学小説を収集し、数世紀にわたって幅広い話題を扱っている。
質問分類を8つのカテゴリーで定義し,1,304の質問の作成を導く。
我々は、小説の特定の属性(小説の種類、文字番号、出版年など)がLLMのパフォーマンスに与える影響を詳細に分析する。
論文 参考訳(メタデータ) (2024-05-16T15:02:24Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
この包括的調査は、HSモデレーションの最近の歩みを掘り下げている。
大型言語モデル(LLM)と大規模マルチモーダルモデル(LMM)の急成長する役割を強調した。
研究における既存のギャップを、特に表現不足言語や文化の文脈で特定する。
論文 参考訳(メタデータ) (2024-01-30T03:51:44Z) - A Computational Approach to Style in American Poetry [19.41186389974801]
我々は,アメリカの詩のスタイルを評価し,詩集を相互に視覚化する手法を開発した。
質的な詩批評は、様々な正書法、構文、音韻の特徴を分析するメトリクスの開発を導くのに役立ちました。
本手法は,テキストの学術研究,詩に対する直感的な個人的反応の研究,およびお気に入りの詩に基づいた読者への推薦に有効である。
論文 参考訳(メタデータ) (2023-10-13T18:49:14Z) - PoeticTTS -- Controllable Poetry Reading for Literary Studies [21.29478270833139]
我々は、人間の参照的引用から韻律的な値をクローンして詩を再合成し、その後、微粒な韻律制御を用いて合成音声を操作する。
詩のTTSモデルを微調整することで、詩のイントネーションパターンを広範囲に捉え、韻律のクローニングと操作に有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-11T13:15:27Z) - RELIC: Retrieving Evidence for Literary Claims [29.762552250403544]
文献証拠検索の新たな課題を定式化するために,78Kの文献引用の大規模データセットを用いた。
本稿では,既存の事前学習情報検索基準よりも優れたRoBERTaを用いた高密度経路検索手法を提案する。
論文 参考訳(メタデータ) (2022-03-18T16:56:08Z) - CCPM: A Chinese Classical Poetry Matching Dataset [50.90794811956129]
本稿では,詩のマッチングによるモデルの意味的理解を評価するための新しい課題を提案する。
この課題は、現代漢訳の漢詩では、4人の候補者の中から1行の漢詩を選ばなければならない。
このデータセットを構築するために、まず中国古典詩と現代中国語の翻訳の並列データを得る。
論文 参考訳(メタデータ) (2021-06-03T16:49:03Z) - MixPoet: Diverse Poetry Generation via Learning Controllable Mixed
Latent Space [79.70053419040902]
多様な要素を吸収し,多様なスタイルを創出し,多様性を促進する新しいモデルであるMixPoetを提案する。
半教師付き変分オートエンコーダに基づいて、我々のモデルは潜在空間をいくつかの部分空間に切り離し、それぞれが敵の訓練によって1つの影響因子に条件付けされる。
中国詩の実験結果は、MixPoetが3つの最先端モデルに対して多様性と品質の両方を改善していることを示している。
論文 参考訳(メタデータ) (2020-03-13T03:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。