論文の概要: Unveiling Processing--Property Relationships in Laser Powder Bed Fusion: The Synergy of Machine Learning and High-throughput Experiments
- arxiv url: http://arxiv.org/abs/2409.00248v1
- Date: Fri, 30 Aug 2024 20:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:02:27.239657
- Title: Unveiling Processing--Property Relationships in Laser Powder Bed Fusion: The Synergy of Machine Learning and High-throughput Experiments
- Title(参考訳): レーザー粉体融合における処理の展開--機械学習と高出力実験の相乗効果-
- Authors: Mahsa Amiri, Zahra Zanjani Foumani, Penghui Cao, Lorenzo Valdevit, Ramin Bostanabad,
- Abstract要約: 本稿では,高スループット実験と階層型機械学習(ML)の相乗効果を考慮した手法を提案する。
レーザー粉末層融合(LPBF)におけるプロセスパラメータの集合と選択された機械的特性(引張強度と延性)との複雑な関係を明らかにする。
本手法は材料非依存であり、17-4PHステンレス鋼への適用を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving desired mechanical properties in additive manufacturing requires many experiments and a well-defined design framework becomes crucial in reducing trials and conserving resources. Here, we propose a methodology embracing the synergy between high-throughput (HT) experimentation and hierarchical machine learning (ML) to unveil the complex relationships between a large set of process parameters in Laser Powder Bed Fusion (LPBF) and selected mechanical properties (tensile strength and ductility). The HT method envisions the fabrication of small samples for rapid automated hardness and porosity characterization, and a smaller set of tensile specimens for more labor-intensive direct measurement of yield strength and ductility. The ML approach is based on a sequential application of Gaussian processes (GPs) where the correlations between process parameters and hardness/porosity are first learnt and subsequently adopted by the GPs that relate strength and ductility to process parameters. Finally, an optimization scheme is devised that leverages these GPs to identify the processing parameters that maximize combinations of strength and ductility. By founding the learning on larger easy-to-collect and smaller labor-intensive data, we reduce the reliance on expensive characterization and enable exploration of a large processing space. Our approach is material-agnostic and herein we demonstrate its application on 17-4PH stainless steel.
- Abstract(参考訳): 添加物製造における所望の機械的特性を達成するためには多くの実験が必要である。
本稿では,高出力(HT)実験と階層機械学習(ML)の相乗効果を取り入れ,レーザー粉体融合(LPBF)におけるプロセスパラメータの集合と選択された機械的特性(引張強度と延性)との複雑な関係を明らかにする手法を提案する。
HT法では, 高速自動硬度, ポーシティのキャラクタリゼーションのための小型試料の製作と, より労働集約的な降伏強度および延性測定のための小型の引張試験片の製作を想定している。
MLアプローチはガウス過程(GP)の逐次的応用に基づいており、まずプロセスパラメータと硬さ/ポーシティの相関を学習し、その後、プロセスパラメータに強度と延性に関連するGPによって採用する。
最後に、これらのGPを利用して、強度と延性の組み合わせを最大化する処理パラメータを同定する最適化手法が考案された。
より大規模で作業集約的なデータに基づく学習の確立により、高価な特徴量への依存を減らし、大規模処理空間の探索を可能にする。
本手法は材料非依存であり、17-4PHステンレス鋼への適用を実証する。
関連論文リスト
- Composite Material Design for Optimized Fracture Toughness Using Machine Learning [0.0]
本稿では,機械学習(ML)技術を用いた2次元および3次元複合構造の最適化について検討する。
二重カンチレバービーム(Double Cantilever Beam, DCB)試験における破壊靭性とき裂進展に焦点を当てている。
論文 参考訳(メタデータ) (2024-06-23T17:01:14Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
MLXPはPythonをベースとした,オープンソースの,シンプルで,軽量な実験管理ツールである。
実験プロセスを最小限のオーバーヘッドで合理化し、高いレベルの実践的オーバーヘッドを確保します。
論文 参考訳(メタデータ) (2024-02-21T14:22:20Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
プロセスパラメータ, サーマルプロファイル, AFSD の相関関係はよく分かっていない。
この研究は、教師付き機械学習(ニューラルネットワーク)と物理情報ネットワーク(PINN)を組み合わせて、プロセスパラメータからAFSDのピーク温度分布を予測する。
論文 参考訳(メタデータ) (2023-09-13T09:39:42Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
金属添加物製造(MAM)は大きな発展を遂げており、多くの注目を集めている。
MAMプロセスの複雑な性質から,MAMプリントクラッドの特性に対する処理パラメータの影響を予測することは困難である。
機械学習(ML)技術は、プロセスの基礎となる物理と処理パラメータをクラッド特性に結びつけるのに役立つ。
論文 参考訳(メタデータ) (2023-07-04T18:32:41Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Machine Learning-Driven Process of Alumina Ceramics Laser Machining [0.0]
インテリジェントな戦略は、ピコ秒レーザー加工パラメータの関係を捉えるために機械学習(ML)技術を使用することである。
ビーム振幅や周波数、スキャナ通過速度、表面上の通過数などのレーザーパラメータを用いて、彫刻されたチャネルの深さ、最上幅、底幅を予測する。
ニューラルネットワーク(NN)は、出力を予測する上で最も効率的である。
論文 参考訳(メタデータ) (2022-06-13T22:35:14Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
接着プロセスに最適なプロセスパラメータを見つけることは困難である。
遺伝的アルゴリズムのような伝統的な進化的アプローチは、その問題を解決するのに不適である。
本研究では,目的関数と制約関数をエミュレートするために,特定の機械学習手法をうまく応用した。
論文 参考訳(メタデータ) (2021-12-16T10:14:39Z) - Multi-objective simulation optimization of the adhesive bonding process
of materials [50.591267188664666]
このような接着プロセスの最適プロセスパラメータを見つけることは困難である。
本研究では,ガウス過程回帰とロジスティック回帰を用いてベイズ最適化を行った。
論文 参考訳(メタデータ) (2021-12-09T09:58:58Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。