Unveiling Processing--Property Relationships in Laser Powder Bed Fusion: The Synergy of Machine Learning and High-throughput Experiments
- URL: http://arxiv.org/abs/2409.00248v1
- Date: Fri, 30 Aug 2024 20:34:16 GMT
- Title: Unveiling Processing--Property Relationships in Laser Powder Bed Fusion: The Synergy of Machine Learning and High-throughput Experiments
- Authors: Mahsa Amiri, Zahra Zanjani Foumani, Penghui Cao, Lorenzo Valdevit, Ramin Bostanabad,
- Abstract summary: We propose a methodology embracing the synergy between high- throughput experimentation and hierarchical machine learning (ML)
We unveil the complex relationships between a large set of process parameters in Laser Powder Bed Fusion (LPBF) and selected mechanical properties (tensile strength and ductility)
Our approach is material-agnostic and herein we demonstrate its application on 17-4PH stainless steel.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving desired mechanical properties in additive manufacturing requires many experiments and a well-defined design framework becomes crucial in reducing trials and conserving resources. Here, we propose a methodology embracing the synergy between high-throughput (HT) experimentation and hierarchical machine learning (ML) to unveil the complex relationships between a large set of process parameters in Laser Powder Bed Fusion (LPBF) and selected mechanical properties (tensile strength and ductility). The HT method envisions the fabrication of small samples for rapid automated hardness and porosity characterization, and a smaller set of tensile specimens for more labor-intensive direct measurement of yield strength and ductility. The ML approach is based on a sequential application of Gaussian processes (GPs) where the correlations between process parameters and hardness/porosity are first learnt and subsequently adopted by the GPs that relate strength and ductility to process parameters. Finally, an optimization scheme is devised that leverages these GPs to identify the processing parameters that maximize combinations of strength and ductility. By founding the learning on larger easy-to-collect and smaller labor-intensive data, we reduce the reliance on expensive characterization and enable exploration of a large processing space. Our approach is material-agnostic and herein we demonstrate its application on 17-4PH stainless steel.
Related papers
- Composite Material Design for Optimized Fracture Toughness Using Machine Learning [0.0]
This paper investigates the optimization of 2D and 3D composite structures using machine learning (ML) techniques.
It focuses on fracture toughness and crack propagation in the Double Cantilever Beam (DCB) test.
arXiv Detail & Related papers (2024-06-23T17:01:14Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Supervised Machine Learning and Physics based Machine Learning approach
for prediction of peak temperature distribution in Additive Friction Stir
Deposition of Aluminium Alloy [0.0]
correlations between process parameters, thermal profiles, and resulting in AFSD remain poorly understood.
This work employs a framework combining supervised machine learning ( neural) and physics-informed networks (PINNs) to predict peak temperature distribution in AFSD from process parameters.
arXiv Detail & Related papers (2023-09-13T09:39:42Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
Metal additive manufacturing (MAM) has experienced significant developments and gained much attention.
Predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes.
Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics.
arXiv Detail & Related papers (2023-07-04T18:32:41Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Machine Learning-Driven Process of Alumina Ceramics Laser Machining [0.0]
An intelligent strategy is to employ machine learning (ML) techniques to capture the relationship between picosecond laser machining parameters.
Laser parameters such as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, are used for predicting the depth, top width, and bottom width of the engraved channels.
Neural Networks (NN) are the most efficient in predicting the outputs.
arXiv Detail & Related papers (2022-06-13T22:35:14Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - Multi-objective simulation optimization of the adhesive bonding process
of materials [50.591267188664666]
Finding the optimal process parameters for such adhesive bonding process is challenging.
In this research, we successfully applied Bayesian optimization using Gaussian Process Regression and Logistic Regression.
arXiv Detail & Related papers (2021-12-09T09:58:58Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.