Self-supervised Fusarium Head Blight Detection with Hyperspectral Image and Feature Mining
- URL: http://arxiv.org/abs/2409.00395v1
- Date: Sat, 31 Aug 2024 09:09:02 GMT
- Title: Self-supervised Fusarium Head Blight Detection with Hyperspectral Image and Feature Mining
- Authors: Yu-Fan Lin, Ching-Heng Cheng, Bo-Cheng Qiu, Cheng-Jun Kang, Chia-Ming Lee, Chih-Chung Hsu,
- Abstract summary: Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn.
Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale.
With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Conal Neural Networks (CNNs) has emerged as a promising solution.
- Score: 6.252899116304227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fusarium Head Blight (FHB) is a serious fungal disease affecting wheat (including durum), barley, oats, other small cereal grains, and corn. Effective monitoring and accurate detection of FHB are crucial to ensuring stable and reliable food security. Traditionally, trained agronomists and surveyors perform manual identification, a method that is labor-intensive, impractical, and challenging to scale. With the advancement of deep learning and Hyper-spectral Imaging (HSI) and Remote Sensing (RS) technologies, employing deep learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution. Notably, wheat infected with serious FHB may exhibit significant differences on the spectral compared to mild FHB one, which is particularly advantageous for hyperspectral image-based methods. In this study, we propose a self-unsupervised classification method based on HSI endmember extraction strategy and top-K bands selection, designed to analyze material signatures in HSIs to derive discriminative feature representations. This approach does not require expensive device or complicate algorithm design, making it more suitable for practical uses. Our method has been effectively validated in the Beyond Visible Spectrum: AI for Agriculture Challenge 2024. The source code is easy to reproduce and available at {https://github.com/VanLinLin/Automated-Crop-Disease-Diagnosis-from-Hyperspectral-Imagery-3rd}.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Exploring Hyperspectral Anomaly Detection with Human Vision: A Small
Target Aware Detector [20.845503528474328]
Hyperspectral anomaly detection (HAD) aims to localize pixel points whose spectral features differ from the background.
Existing HAD methods aim to objectively detect and distinguish background and anomalous spectra.
In this paper, we analyze hyperspectral image (HSI) features under human visual perception.
We propose a small target aware detector (STAD), which introduces saliency maps to capture HSI features closer to human visual perception.
arXiv Detail & Related papers (2024-01-02T08:28:38Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
Fusarium head blight is a devastating disease that causes significant economic losses annually on small grains.
Image processing techniques have been developed using supervised machine learning algorithms for the early detection of FHB.
A new Context Bridge is proposed to integrate the local representation capability of the U-Net network in the transformer model.
arXiv Detail & Related papers (2023-08-07T15:44:58Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Monitoring MBE substrate deoxidation via RHEED image-sequence analysis
by deep learning [62.997667081978825]
We present an approach for automated surveillance of GaAs substrate deoxidation in MBE using deep learning based RHEED image-sequence classification.
Our approach consists of an non-supervised auto-encoder (AE) for feature extraction, combined with a supervised convolutional network.
arXiv Detail & Related papers (2022-10-07T10:01:06Z) - Comparison of semi-supervised learning methods for High Content
Screening quality control [0.34998703934432673]
High-content screening (HCS) offers to quantify complex cellular phenotypes from images at high throughput.
This process can be obstructed by image aberrations such as out-of-focus image blur, fluorophore saturation, debris, a high level of noise, unexpected auto-fluorescence or empty images.
We evaluate deep learning options that do not require extensive image annotations to provide a straightforward and easy to use semi-supervised learning solution.
arXiv Detail & Related papers (2022-08-09T08:14:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - A Novel CropdocNet for Automated Potato Late Blight Disease Detection
from the Unmanned Aerial Vehicle-based Hyperspectral Imagery [3.3283767441645478]
Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally.
Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias.
Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge.
arXiv Detail & Related papers (2021-07-28T11:18:48Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.