論文の概要: Roundabout Dilemma Zone Data Mining and Forecasting with Trajectory Prediction and Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.00622v1
- Date: Sun, 1 Sep 2024 05:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:27:03.921414
- Title: Roundabout Dilemma Zone Data Mining and Forecasting with Trajectory Prediction and Graph Neural Networks
- Title(参考訳): 軌道予測とグラフニューラルネットワークを用いたジレンマゾーンデータマイニングと予測
- Authors: Manthan Chelenahalli Satish, Duo Lu, Bharatesh Chakravarthi, Mohammad Farhadi, Yezhou Yang,
- Abstract要約: 本稿では、軌道予測を利用してDZイベントを予測する自動システムについて述べる。
本システムは,自律走行と手動走行の両方において,安全基準を強化することを目的としている。
- 参考スコア(独自算出の注目度): 23.098974945647683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic roundabouts, as complex and critical road scenarios, pose significant safety challenges for autonomous vehicles. In particular, the encounter of a vehicle with a dilemma zone (DZ) at a roundabout intersection is a pivotal concern. This paper presents an automated system that leverages trajectory forecasting to predict DZ events, specifically at traffic roundabouts. Our system aims to enhance safety standards in both autonomous and manual transportation. The core of our approach is a modular, graph-structured recurrent model that forecasts the trajectories of diverse agents, taking into account agent dynamics and integrating heterogeneous data, such as semantic maps. This model, based on graph neural networks, aids in predicting DZ events and enhances traffic management decision-making. We evaluated our system using a real-world dataset of traffic roundabout intersections. Our experimental results demonstrate that our dilemma forecasting system achieves a high precision with a low false positive rate of 0.1. This research represents an advancement in roundabout DZ data mining and forecasting, contributing to the assurance of intersection safety in the era of autonomous vehicles.
- Abstract(参考訳): 交通の行き来は、複雑で重要な道路シナリオとして、自動運転車に重大な安全上の課題をもたらす。
特に、円周交差点でジレンマゾーン(DZ)を持つ車両が遭遇することは、重要な懸念事項である。
本稿では、軌道予測を利用してDZイベントを予測する自動システムについて述べる。
本システムは,自律走行と手動走行の両方における安全基準の向上を目的としている。
このアプローチのコアとなるのは、多様なエージェントの軌道を予測し、エージェントのダイナミクスを考慮し、セマンティックマップのような異種データを統合する、モジュラーでグラフ構造化されたリカレントモデルである。
このモデルは、グラフニューラルネットワークに基づいて、DZイベントの予測を支援し、トラフィック管理の意思決定を強化する。
我々は,実環境における交通の交点のデータセットを用いてシステム評価を行った。
実験の結果,我々のジレンマ予測システムは偽陽性率0.1の精度で高い精度を達成できた。
本研究は、自動運転車時代における交差点安全性の保証に寄与する、全周DZデータマイニングと予測の進歩を示す。
関連論文リスト
- IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model [0.24999074238880487]
道路交通渋滞予測はインテリジェント交通システムにおいて重要な要素である。
IBB Traffic Graphデータセットは、2451の異なる場所で収集されたセンサーデータをカバーしている。
本稿では,機能工学を通して時間的リンクを強化する道路交通予測モデルを提案する。
論文 参考訳(メタデータ) (2024-08-02T05:23:19Z) - KI-GAN: Knowledge-Informed Generative Adversarial Networks for Enhanced Multi-Vehicle Trajectory Forecasting at Signalized Intersections [15.464952852717127]
本稿では、交通信号情報と多車間相互作用を統合して車両軌道を正確に予測する「知識インフォームド・ジェネレーター・ネットワーク(KI-GAN)」という新しいモデルを提案する。
SinDデータセットに基づいて、KI-GANモデルは平均変位誤差0.05、最終変位誤差0.12を6秒の観測と6秒の予測サイクルで達成できる。
論文 参考訳(メタデータ) (2024-04-17T08:53:59Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information [0.0]
本稿では,トランスフォーマーネットワークに基づく歩行者軌道予測のための単純な構造を利用する。
我々は,最大5秒の地平線における都市シナリオにおける車両軌道予測の問題にそれらの利用を適応させる。
我々のモデルは最先端の成果を達成し、異なるタイプの都市環境に柔軟で適応可能であることを証明している。
論文 参考訳(メタデータ) (2021-06-01T15:18:55Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。