論文の概要: Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
- arxiv url: http://arxiv.org/abs/2501.13461v1
- Date: Thu, 23 Jan 2025 08:23:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:26.430259
- Title: Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything
- Title(参考訳): インフラストラクチャー・ツー・エブリシングのための信号化区間における知識インフォームドマルチエージェント軌道予測
- Authors: Huilin Yin, Yangwenhui Xu, Jiaxiang Li, Hao Zhang, Gerhard Rigoll,
- Abstract要約: I2XTraj(Infrastructure-to-Everything)専用の信号化交差点におけるマルチエージェント軌道予測フレームワークを提案する。
我々のフレームワークは、動的グラフの注意を生かして、交通信号や運転行動からの知識を統合する。
提案手法は,マルチエージェントと単一エージェントの両方のシナリオにおいて,既存の手法よりも30%以上優れています。
- 参考スコア(独自算出の注目度): 7.452533291998081
- License:
- Abstract: Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. Furthermore, most works underutilize critical intersection information, including traffic signals, and behavior patterns induced by road structures. Therefore, we propose a multi-agent trajectory prediction framework at signalized intersections dedicated to Infrastructure-to-Everything (I2XTraj). Our framework leverages dynamic graph attention to integrate knowledge from traffic signals and driving behaviors. A continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals from infrastructure devices. Additionally, leveraging the prior knowledge of the intersection topology, we propose a driving strategy awareness mechanism to model the joint distribution of goal intentions and maneuvers. To the best of our knowledge, I2XTraj represents the first multi-agent trajectory prediction framework explicitly designed for infrastructure deployment, supplying subscribable prediction services to all vehicles at intersections. I2XTraj demonstrates state-of-the-art performance on both the Vehicle-to-Infrastructure dataset V2X-Seq and the aerial-view dataset SinD for signalized intersections. Quantitative evaluations show that our approach outperforms existing methods by more than 30% in both multi-agent and single-agent scenarios.
- Abstract(参考訳): 信号化交差点におけるマルチエージェント軌道予測は,効率的なインテリジェント交通システムと安全な自律運転システムを開発する上で重要である。
交差点シナリオの複雑化と単車知覚の限界により、車両中心の予測手法の性能は高水準に達している。
さらに,道路構造によって引き起こされる交通信号や行動パターンなど,重要な交差点情報を活用する作業がほとんどである。
そこで本稿では,インフラストラクチャ・トゥ・エブリシング(I2XTraj)専用の信号化交差点におけるマルチエージェント軌道予測フレームワークを提案する。
我々のフレームワークは、動的グラフの注意を生かして、交通信号や運転行動からの知識を統合する。
インフラ装置からのリアルタイムトラフィック信号を適応的に処理するための連続信号インフォームド機構を提案する。
さらに,交差点トポロジの事前知識を活用し,目標意図と操作の協調分布をモデル化する駆動戦略認識機構を提案する。
我々の知る限り、I2XTrajはインフラ配置のために明示的に設計された最初のマルチエージェント軌道予測フレームワークであり、交差点の全車両に説明可能な予測サービスを提供する。
I2XTrajは、V2X-Seqと信号化された交差点のための空中ビューデータセットSinDの両方で最先端の性能を示す。
定量的評価により,本手法はマルチエージェントと単一エージェントの両方のシナリオにおいて,既存の手法よりも30%以上性能が高いことが示された。
関連論文リスト
- Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
本稿では,トランスフォーマーモデルにおけるアテンション表現に対して,クロスドメイン適応を行う新しい時空間軌道予測フレームワークを提案する。
グラフ畳み込みネットワークは、マルチエージェント車両間の複雑な時空間相互作用を正確にモデル化する動的グラフ特徴埋め込みを構築するためにも統合される。
論文 参考訳(メタデータ) (2024-11-09T06:39:44Z) - TrafficGPT: Towards Multi-Scale Traffic Analysis and Generation with Spatial-Temporal Agent Framework [3.947797359736224]
我々は3つのAIエージェントを用いてマルチスケールトラフィックデータを処理するマルチスケールトラフィック生成システムであるTrafficGPTを設計した。
TrafficGPTは,1)ユーザと対話し,テキストを介して予測タスクを抽出するテキスト・ツー・デマンドエージェント,2)マルチスケールトラフィックデータを利用して時間的特徴と類似性を生成するトラフィック予測エージェント,3)予測結果を用いて提案や視覚化を行う提案・可視化エージェントの3つの重要なAIエージェントから構成される。
論文 参考訳(メタデータ) (2024-05-08T07:48:40Z) - KI-GAN: Knowledge-Informed Generative Adversarial Networks for Enhanced Multi-Vehicle Trajectory Forecasting at Signalized Intersections [15.464952852717127]
本稿では、交通信号情報と多車間相互作用を統合して車両軌道を正確に予測する「知識インフォームド・ジェネレーター・ネットワーク(KI-GAN)」という新しいモデルを提案する。
SinDデータセットに基づいて、KI-GANモデルは平均変位誤差0.05、最終変位誤差0.12を6秒の観測と6秒の予測サイクルで達成できる。
論文 参考訳(メタデータ) (2024-04-17T08:53:59Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
現実の交通シナリオにおける軌道予測にはいくつかの課題がある。
目的や周囲に注意を払って交通をナビゲートする人々の自然な習慣に触発された本論文は,ユニークなグラフ注意ネットワークを示す。
ネットワークはエージェント間の動的社会的相互作用をモデル化し、セマンティックマップでトラフィックルールに適合するように設計されている。
論文 参考訳(メタデータ) (2021-03-30T11:53:12Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。