論文の概要: Data-driven ODE modeling of the high-frequency complex dynamics via a low-frequency dynamics model
- arxiv url: http://arxiv.org/abs/2409.00668v2
- Date: Sun, 10 Nov 2024 04:58:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:05:00.009030
- Title: Data-driven ODE modeling of the high-frequency complex dynamics via a low-frequency dynamics model
- Title(参考訳): 低周波力学モデルによる高周波複素力学のデータ駆動ODEモデリング
- Authors: Natsuki Tsutsumi, Kengo Nakai, Yoshitaka Saiki,
- Abstract要約: 本稿では,流体流の高周波断続挙動を含む流体力学をモデリングする新しい手法を提案する。
1つは基本変数の自律システムであり、もう1つは目的変数が項に影響を受けていることに関するものである。
構成されたジョイントモデルは、短い軌跡だけでなく、長い軌跡から得られたカオス集合と統計的性質の再構築にも成功している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In our previous paper [N. Tsutsumi, K. Nakai and Y. Saiki, Chaos 32, 091101 (2022)], we proposed a method for constructing a system of differential equations of chaotic behavior from only observable deterministic time series, which we call the radial function-based regression (RfR) method. However, when the targeted variable's behavior is rather complex, the direct application of the RfR method does not function well. In this study, we propose a novel method of modeling such dynamics, including the high-frequency intermittent behavior of a fluid flow, by considering another variable (base variable) showing relatively simple, less intermittent behavior. We construct an autonomous joint model composed of two parts: the first is an autonomous system of a base variable, and the other concerns the targeted variable being affected by a term involving the base variable to demonstrate complex dynamics. The constructed joint model succeeded in not only inferring a short trajectory but also reconstructing chaotic sets and statistical properties obtained from a long trajectory such as the density distributions of the actual dynamics.
- Abstract(参考訳): これまでの論文 (N. Tsutsumi, K. Nakai, Y. Saiki, Chaos 32, 091101 (2022)] では, 観測可能な決定時間系列のみからカオス挙動の微分方程式系を構築する方法を提案し, 放射関数に基づく回帰法 (RfR) と呼ぶ。
しかし、ターゲット変数の振舞いがかなり複雑である場合、RfR法の直接適用はうまく機能しない。
本研究では, 流体流の高周波断続挙動を含む流体力学を, 比較的単純で断続挙動の少ない別の変数(基底変数)を考慮し, モデリングする手法を提案する。
1つは基本変数の自律システムであり、もう1つは、対象変数が複雑なダイナミクスを示すために基本変数を含む項によって影響を受けることに関するものである。
構成されたジョイントモデルは、短い軌道だけでなく、カオス集合と実際の力学の密度分布のような長い軌道から得られる統計的性質を再構成することに成功した。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - Principled model selection for stochastic dynamics [0.0]
PASTISは、確率推定統計と極値理論を組み合わせて超流動パラメータを抑圧する原理的手法である。
サンプリング率や測定誤差が低い場合でも、最小限のモデルを確実に識別する。
これは偏微分方程式に適用され、生態ネットワークや反応拡散力学にも適用される。
論文 参考訳(メタデータ) (2025-01-17T18:23:16Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Accurate Data-Driven Surrogates of Dynamical Systems for Forward
Propagation of Uncertainty [0.0]
collocation (SC) は、不確実性のための代理モデルを構築するための非侵入的な方法である。
この研究は、解ではなくモデルの力学にSC近似を適用する別のアプローチを示す。
SC-over-dynamics フレームワークは,システム軌道とモデル状態分布の両面において,誤差が小さくなることを示した。
論文 参考訳(メタデータ) (2023-10-16T21:07:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
ガウス過程の微分可能性を利用して、真の連続力学の状態依存線形化近似を作成する方法を示す。
9次元セグウェイのような不安定なシステムのシステムダイナミクスを反復的に学習することで、アプローチを検証する。
論文 参考訳(メタデータ) (2021-03-08T05:08:47Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。