論文の概要: Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems
- arxiv url: http://arxiv.org/abs/2410.02079v1
- Date: Wed, 2 Oct 2024 23:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:05:40.819916
- Title: Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems
- Title(参考訳): 雑音非定常力学系の同定のための深部生成モデル
- Authors: Doris Voina, Steven Brunton, J. Nathan Kutz,
- Abstract要約: 非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
- 参考スコア(独自算出の注目度): 3.1484174280822845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant challenge in many fields of science and engineering is making sense of time-dependent measurement data by recovering governing equations in the form of differential equations. We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems and propose a machine learning method for data-driven system identification. While many methods tackle noisy and limited data, non-stationarity - where differential equation parameters change over time - has received less attention. Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs. This framework allows for uncertainty quantification of ODE coefficients, expanding on previous methods for autonomous systems. These coefficients are then interpreted as latent variables and added to the system to obtain an autonomous dynamical model. We validate our approach using synthetic data, including nonlinear oscillators and the Lorenz system, and apply it to neuronal activity data from C. elegans. Dynamic SINDy uncovers a global nonlinear model, showing it can handle real, noisy, and chaotic datasets. We aim to apply our method to a variety of problems, specifically dynamic systems with complex time-dependent parameters.
- Abstract(参考訳): 多くの科学・工学分野において重要な課題は、微分方程式の形で支配方程式を復元することで、時間依存の測定データを理解することである。
本稿では,非線形,雑音,非自律的な力学系に対する擬似常微分方程式(ODE)モデルの探索に着目し,データ駆動型システム同定のための機械学習手法を提案する。
多くの手法がノイズや限られたデータに対処しているが、微分方程式パラメータが時間とともに変化する非定常性は、あまり注目されていない。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
この枠組みは、従来の自律システムの手法で拡張されたODE係数の不確実性定量化を可能にする。
これらの係数は潜在変数として解釈され、自律力学モデルを得るためにシステムに追加される。
非線形発振器やローレンツ系を含む合成データを用いて本手法を検証し,C. elegansの神経活動データに適用した。
Dynamic SINDyはグローバルな非線形モデルを発見し、実際の、ノイズの多い、カオス的なデータセットを扱えることを示した。
本手法を様々な問題,特に時間依存パラメータの複雑な動的システムに適用することを目的としている。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Automatically identifying ordinary differential equations from data [0.0]
本稿では,信号の平滑化にデノナイジング技術を統合することによって,動的法則を同定する手法を提案する。
ランダムな初期条件のアンサンブルを持つよく知られた常微分方程式について,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-04-21T18:00:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - $Φ$-DVAE: Physics-Informed Dynamical Variational Autoencoders for Unstructured Data Assimilation [3.2873782624127843]
物理インフォームドな動的変分オートエンコーダ(Phi$-DVAE)を開発し、様々なデータストリームを時間進化物理系に埋め込む。
我々の手法は、非構造化データを潜在力学系に同化するために、潜在状態空間モデルのための標準的な非線形フィルタとVOEを組み合わせたものである。
変分ベイズフレームワークは、符号化、潜時状態、未知のシステムパラメータの合同推定に使用される。
論文 参考訳(メタデータ) (2022-09-30T17:34:48Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。