Thermodynamic and energetic constraints on out-of-equilibrium tunneling rates
- URL: http://arxiv.org/abs/2409.00981v1
- Date: Mon, 2 Sep 2024 06:55:53 GMT
- Title: Thermodynamic and energetic constraints on out-of-equilibrium tunneling rates
- Authors: Ludovico Tesser, Matteo Acciai, Christian Spånslätt, Inès Safi, Janine Splettstoesser,
- Abstract summary: We study bipartite quantum systems kept at different temperatures where a tunnel coupling induces transitions.
We find two independent constraints on the temperature-bias-dependent, out-of-equilibrium tunneling rates between the two subsystems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study bipartite quantum systems kept at different temperatures where a tunnel coupling between the two subsystems induces transitions. We find two independent constraints on the temperature-bias-dependent, out-of-equilibrium tunneling rates between the two subsystems, which both turn out to be particularly restrictive when the coupled quantum systems are small. These bounds take the form of a thermodynamic and of an energetic constraint, as they are associated with the dissipated heat and with the absorbed energy required to establish and deplete the temperature bias, respectively. The derived constraints apply to a large class of experimentally accessible quantum systems: except for the restriction to the tunneling regime, they hold for arbitrary subsystem Hamiltonians, including interactions or non-linear energy spectra. These results hold for a large class of experimentally relevant systems, ranging from molecular junctions to coupled cavities, and can be tested by, for instance, measuring the out-of-equilibrium tunneling current and its noise.
Related papers
- Nonequilibrium quantum heat transport between structured environments [0.0]
We apply the hierarchical equations of motion technique to analyze nonequilibrium heat transport in a spin-boson type model.
We find the heat current to be drastically modified at weak system-bath coupling.
Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems.
arXiv Detail & Related papers (2024-03-20T18:20:12Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Unconventional pairing in few-fermion systems at finite temperature [0.0]
Two-component mixtures of fermionic particles confined in a one-dimensional harmonic trap are investigated.
Specific non-classical pairing correlations are analyzed in terms of the noise correlations.
It is shown that along with increasing temperature, any imbalanced system hosting Fulde-Ferrel-Larkin-Ovchinnikov pairs crossovers to a standard Bardeen-Cooper-Schrieffer one characterized by zero net momentum of resulting pairs.
arXiv Detail & Related papers (2022-02-15T18:37:04Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z) - Analog of a quantum heat engine using a single-spin qubit [0.0]
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine.
We present the experimental realization and the theoretical description of such a two-level system as an impurity electron spin in a silicon tunnel field-effect transistor.
arXiv Detail & Related papers (2020-08-24T03:49:06Z) - $Large-scale$ thermalization, prethermalization and impact of the
temperature in the quench dynamics of two unequal Luttinger liquids [0.0]
We study the effect of a quantum quench between two tunnel coupled Tomonaga-Luttinger liquids (TLLs) with different speed of sound and interaction parameter.
We focus on correlation functions associated with the antisymmetric and symmetric combinations of the two TLLs.
The presence of different speeds of sound leads to multiple lightcones separating different decaying regimes.
arXiv Detail & Related papers (2020-06-29T14:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.