The Eigenstate Thermalization Hypothesis in a Quantum Point Contact Geometry
- URL: http://arxiv.org/abs/2501.03076v2
- Date: Mon, 17 Feb 2025 15:05:16 GMT
- Title: The Eigenstate Thermalization Hypothesis in a Quantum Point Contact Geometry
- Authors: G. C. Levine, B. A. Friedman,
- Abstract summary: It is known that the long-range quantum entanglement exhibited in free fermion systems is sufficient to "thermalize" a small subsystem.
We show that entanglement entropy of a subsystem connected by a small number of quantum point contacts is sub-extensive, scaling as the linear size of the subsystem.
- Score: 0.0
- License:
- Abstract: It is known that the long-range quantum entanglement exhibited in free fermion systems is sufficient to "thermalize" a small subsystem in that the subsystem reduced density matrix computed from a typical excited eigenstate of the combined system is approximately thermal. Remarkably, fermions without any interactions are thus thought to satisfy the Eigenstate Thermalization Hypothesis (ETH). We explore this hypothesis when the fermion subsystem is only minimally coupled to a quantum reservoir (in the form of another fermion system) through a quantum point contact (QPC). The entanglement entropy of two 2-d free fermion systems connected by one or more quantum point contacts (QPC) is examined at finite energy and in the ground state. When the combined system is in a typical excited state, it is shown that the entanglement entropy of a subsystem connected by a small number of QPCs is sub-extensive, scaling as the linear size of the subsystem ($L_A$). For sufficiently low energies ($E$) and small subsystems, it is demonstrated numerically that the entanglement entropy $S_A \sim L_A E$, what one would expect for the thermodynamics of a one-dimensional system. In this limit, we suggest that the entropy carried by each additional QPC is quantized using the one-dimensional finite size/temperature conformal scaling: $\Delta S_A = \alpha \log{(1/E)\sinh{(L_AE)}}$. The sub-extensive entropy in the case of a small number of QPCs should be contrasted with the expectation for both classical, ergodic systems and quantum chaotic systems wherein a restricted geometry might affect the equilibrium relaxation times, but not the equilibrium properties themselves, such as extensive entropy and heat capacity.
Related papers
- Thermodynamics of the Page curve in Markovian open quantum systems [0.0]
We study the entropy dynamics for Lindbladian evolution in weak contact with Markovian reservoirs.
We give an analytic expression of the entanglement dynamics for a decaying excitation in a two-level system.
arXiv Detail & Related papers (2025-01-15T19:01:04Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Quantum entropy thermalization [5.5586788751870175]
In an isolated quantum many-body system, the entropy of a subsystem thermalizes if at long times, it is to leading order equal to the thermodynamic entropy of the subsystem at the same energy.
We prove entropy thermalization for a nearly integrable Sachdev-Ye-Kitaev model in a pure product state.
arXiv Detail & Related papers (2023-02-20T18:51:21Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Non-Abelian eigenstate thermalization hypothesis [58.720142291102135]
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries.
We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
arXiv Detail & Related papers (2022-06-10T18:14:18Z) - Nonperturbative renormalization of quantum thermodynamics from weak to
strong couplings [2.542198147027801]
By solving the exact master equation of open quantum systems, we formulate the quantum thermodynamics from weak to strong couplings.
We find that the exact solution of the reduced density matrix of these systems approaches a Gibbs-type state in the steady-state limit for both the weak and strong system-reservoir coupling strengths.
arXiv Detail & Related papers (2022-05-17T06:25:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Tensor-network approach to thermalization in open quantum many-body
systems [0.0]
We investigate the relaxation dynamics of open non-integrable quantum many-body systems in the thermodynamic limit.
We numerically show that when an initial state of the LQME is a thermal Gibbs state, a time evolved state is always indistinguishable from a Gibbs state with a time-dependent effective temperature.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.