論文の概要: Advancing Generalization in PINNs through Latent-Space Representations
- arxiv url: http://arxiv.org/abs/2411.19125v1
- Date: Thu, 28 Nov 2024 13:16:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:28.705150
- Title: Advancing Generalization in PINNs through Latent-Space Representations
- Title(参考訳): 潜時空間表現によるPINNの一般化の促進
- Authors: Honghui Wang, Yifan Pu, Shiji Song, Gao Huang,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
- 参考スコア(独自算出の注目度): 71.86401914779019
- License:
- Abstract: Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs). However, their generalization capabilities across varying scenarios remain limited. To overcome this limitation, we propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations, including varying initial conditions, PDE coefficients, and training time horizons. PIDO exploits the shared underlying structure of dynamical systems with different properties by projecting PDE solutions into a latent space using auto-decoding. It then learns the dynamics of these latent representations, conditioned on the PDE coefficients. Despite its promise, integrating latent dynamics models within a physics-informed framework poses challenges due to the optimization difficulties associated with physics-informed losses. To address these challenges, we introduce a novel approach that diagnoses and mitigates these issues within the latent space. This strategy employs straightforward yet effective regularization techniques, enhancing both the temporal extrapolation performance and the training stability of PIDO. We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations. Additionally, we demonstrate the transferability of its learned representations to downstream applications such as long-term integration and inverse problems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げている。
しかし、様々なシナリオにまたがる一般化能力は依然として限られている。
この制限を克服するために,様々な初期条件,PDE係数,トレーニング時間地平線を含む多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法であるPIDOを提案する。
PIDOは、PDEソリューションを自動復号化を用いて潜在空間に投影することで、異なる性質を持つ力学系の共有基盤構造を利用する。
その後、PDE係数で条件付けられたこれらの潜在表現のダイナミクスを学ぶ。
その約束にもかかわらず、物理学インフォームド・フレームワークに潜伏力学モデルを統合することは、物理学インフォームド・ロスに伴う最適化上の困難により、課題を提起する。
これらの課題に対処するために、潜伏空間内でこれらの問題を診断し緩和する新しいアプローチを導入する。
この戦略は、時間外挿性能とPIDOの訓練安定性を両立させる、単純かつ効果的な正則化技術を採用している。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
さらに、学習した表現を、長期統合や逆問題といった下流アプリケーションに転送する可能性を示す。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Masked Autoencoders are PDE Learners [7.136205674624813]
Masked Pretrainingは、不均一な物理学を統合して潜在表現を学習し、潜在PDE算術を実行する。
学習された潜在表現のニューラルソルバは、様々な係数、離散化、境界条件を越えて、タイムステッピングと超分解能のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-03-26T14:17:01Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - LatentPINNs: Generative physics-informed neural networks via a latent
representation learning [0.0]
本稿では,PDEパラメータの潜在表現をPINNに追加(座標に)入力として利用するフレームワークであるLatentPINNを紹介する。
まず,PDEパラメータの分布の潜在表現を学習する。
第2段階では、解領域内の座標空間からランダムに描画されたサンプルから得られる入力に対して、物理インフォームドニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2023-05-11T16:54:17Z) - PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE
Solvers [4.1173475271436155]
物理インフォームドセル表現(PIXEL)と呼ばれる新しいデータ駆動型PDEの解法を提案する。
PIXELは古典的な数値法と学習に基づくアプローチをエレガントに組み合わせている。
PIXELは高速収束速度と高精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T10:46:56Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。