Certifying Quantum Temporal Correlation via Randomized Measurements: Theory and Experiment
- URL: http://arxiv.org/abs/2409.02470v1
- Date: Wed, 4 Sep 2024 06:40:42 GMT
- Title: Certifying Quantum Temporal Correlation via Randomized Measurements: Theory and Experiment
- Authors: Hongfeng Liu, Zhenhuan Liu, Shu Chen, Xinfang Nie, Xiangjing Liu, Dawei Lu,
- Abstract summary: We consider the certification of temporal quantum correlations using the pseudo-density matrix (PDM)
PDM is an extension of the density matrix to the time domain, where negative eigenvalues are key indicators of temporal correlations.
We develop an efficient protocol for temporal correlation detection by virtually preparing the PDM within a single time slice.
- Score: 4.83663467727187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the certification of temporal quantum correlations using the pseudo-density matrix (PDM), an extension of the density matrix to the time domain, where negative eigenvalues are key indicators of temporal correlations. Conventional methods for detecting these correlations rely on PDM tomography, which often involves excessive redundant information and requires exponential resources. In this work, we develop an efficient protocol for temporal correlation detection by virtually preparing the PDM within a single time slice and estimating its second-order moments using randomized measurements. Through sample complexity analysis, we demonstrate that our protocol requires only a constant number of measurement bases, making it particularly advantageous for systems utilizing ensemble average measurements, as it maintains constant runtime complexity regardless of the number of qubits. We experimentally validate our protocol on a nuclear magnetic resonance platform, a typical thermodynamic quantum system, where the experimental results closely align with theoretical predictions, confirming the effectiveness of our protocol.
Related papers
- Geometry of sequential quantum correlations and robust randomness
certification [0.0]
We study the geometry of quantum correlations and their implications for robust device-independent randomness generation.
We identify a boundary for the set of these correlations expressed as a trade-off between the amount of nonlocality between different observers.
We propose a practical protocol based on non-projective measurements that can produce the boundary correlations under ideal conditions.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Snapshotting Quantum Dynamics at Multiple Time Points [10.226937603741474]
We propose a method to extract dynamic information from a quantum system at intermediate time points.
We reconstruct a multi-time quasi-probability distribution (QPD) that correctly recovers the probability at the respective time points.
arXiv Detail & Related papers (2022-07-13T10:28:01Z) - Efficient and robust estimation of many-qubit Hamiltonians [0.0]
Characterizing the interactions and dynamics of quantum mechanical systems is an essential task in development of quantum technologies.
We propose an efficient protocol for characterizing the underlying Hamiltonian dynamics and the noise of a multi-qubit device.
This protocol can be used to parallelize to learn the Hamiltonian, rendering it applicable for the characterization of both current and future quantum devices.
arXiv Detail & Related papers (2022-05-19T13:52:32Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Measuring Time-Dependent Induced Quantum Coherences via Two-Dimensional
Coherence Spectroscopy [0.0]
We propose a two-dimensional spectroscopic protocol for measuring the time-dependent coherences between the stationary states of a system.
We also investigate the role of temporally-correlated noise on coherence dephasing.
arXiv Detail & Related papers (2021-04-07T10:39:48Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Multi-view Integration Learning for Irregularly-sampled Clinical Time
Series [1.9639092030562577]
We propose a multi-view features integration learning from irregular time series data by self-attention mechanism in an imputation-free manner.
We explicitly learn the relationships among the observed values, missing indicators, and time interval between the consecutive observations, simultaneously.
We build an attention-based decoder as a missing value imputer that helps empower the representation learning of the inter-relations among multi-view observations.
arXiv Detail & Related papers (2021-01-25T10:02:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.