論文の概要: Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon
- arxiv url: http://arxiv.org/abs/2409.02681v1
- Date: Wed, 4 Sep 2024 13:11:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 18:26:46.818718
- Title: Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon
- Title(参考訳): AmazonのアクティブファイアモデリングにおけるLSTMとGRUを用いたニューラルネットワーク
- Authors: Ramon Tavares,
- Abstract要約: 本研究では,ブラジルのアマゾンにあるAqua_M-T衛星によって検出された歴史的火点の時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせて、毎日検出された火点の月次蓄積を予測する、混合リカレントニューラルネットワーク(RNN)モデルを採用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a comprehensive methodology for modeling and forecasting the historical time series of fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil. The approach utilizes a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict monthly accumulations of daily detected fire spots. A summary of the data revealed a consistent seasonality over time, with annual maximum and minimum fire spot values tending to repeat at the same periods each year. The primary objective is to verify whether the forecasts capture this inherent seasonality through rigorous statistical analysis. The methodology involved careful data preparation, model configuration, and training using cross-validation with two seeds, ensuring that the data generalizes well to the test and validation sets, and confirming the convergence of the model parameters. The results indicate that the mixed LSTM and GRU model offers improved accuracy in forecasting 12 months ahead, demonstrating its effectiveness in capturing complex temporal patterns and modeling the observed time series. This research significantly contributes to the application of deep learning techniques in environmental monitoring, specifically in fire spot forecasting. In addition to improving forecast accuracy, the proposed approach highlights the potential for adaptation to other time series forecasting challenges, opening new avenues for research and development in machine learning and natural phenomenon prediction. Keywords: Time Series Forecasting, Recurrent Neural Networks, Deep Learning.
- Abstract(参考訳): 本研究では,ブラジルのアマゾンにあるAqua_M-T衛星によって検出された歴史的火点の時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせて、毎日検出された火点の月次蓄積を予測する、混合リカレントニューラルネットワーク(RNN)モデルを採用している。
データの要約では、時間とともに一貫した季節性を示し、毎年最大値と最低値が同じ期間に繰り返される傾向にあった。
主な目的は、厳密な統計分析を通じて、予測が本質的な季節を捉えているかどうかを検証することである。
この手法は、2つのシードを用いたクロスバリデーションを用いた慎重なデータ準備、モデル構成、トレーニング、テストおよび検証セットへのデータの一般化を保証すること、モデルパラメータの収束を確認することを含む。
その結果,LSTMとGRUの混合モデルにより,12ヶ月前の予測精度が向上し,複雑な時間パターンの取得と観測時系列のモデル化に有効であることが示唆された。
本研究は, 深層学習技術の環境モニタリングへの応用に大きく貢献する。
提案手法は,予測精度の向上に加えて,他の時系列予測課題への適応の可能性を強調し,機械学習および自然現象予測における研究・開発のための新たな道を開く。
キーワード: 時系列予測、リカレントニューラルネットワーク、ディープラーニング。
関連論文リスト
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
我々は,過去のセンサモニタリングデータに基づいて,橋脚周辺の深度変化を予測するために,ディープラーニングアルゴリズムの力を利用する。
本研究では,Long Short-Term Memory (LSTM) モデルとConvolutional Neural Network (CNN) モデルの性能について検討した。
論文 参考訳(メタデータ) (2024-04-25T12:04:36Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
この研究は、新しいランダム化に基づく学習手法を用いたニューラル予測モデルの開発に寄与する。
時系列のパターンに基づく表現は、複数の季節の時系列を予測するのに有用である。
論文 参考訳(メタデータ) (2021-07-04T18:39:27Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。