Accelerating multipartite entanglement generation in non-Hermitian superconducting qubits
- URL: http://arxiv.org/abs/2409.03414v1
- Date: Thu, 5 Sep 2024 11:03:16 GMT
- Title: Accelerating multipartite entanglement generation in non-Hermitian superconducting qubits
- Authors: Chimdessa Gashu Feyisa, J. S. You, Huan-Yu Ku, H. H. Jen,
- Abstract summary: We propose a fast generation of multipartite entanglement in non-Hermitian qubits.
We show that Hermitian qubits can generate GHZ states with a high fidelity more than $0.9995$ in a timescale comparable to that of non-Hermitian qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open quantum systems are susceptible to losses in information, energy, and particles due to their surrounding environment. One novel strategy to mitigate these losses is to transform them into advantages for quantum technologies through tailored non-Hermitian quantum systems. In this work, we theoretically propose a fast generation of multipartite entanglement in non-Hermitian qubits. Our findings reveal that weakly coupled non-Hermitian qubits can accelerate multiparty entanglement generation by thousands of times compared to Hermitian qubits, in particular when approaching the $2^n$-th order exceptional points of $n$ qubits in the ${\cal P}{\cal T}-$ symmetric regime. Furthermore, we show that Hermitian qubits can generate GHZ states with a high fidelity more than $0.9995$ in a timescale comparable to that of non-Hermitian qubits, but at the expense of intense driving and large coupling constant. Our approach is scalable to a large number of qubits, presenting a promising pathway for advancing quantum technologies through the non-Hermiticity and higher-order exceptional points in many-body quantum systems.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Controllable non-Hermitian qubit-qubit Coupling in Superconducting quantum Circuit [3.18175475159604]
We study the Energy level degeneracy and quantum state evolution in tunable coupling superconducting quantum circuit.
The qubit's effective energy level and damping rate can be continually tuned in superconducting circuit.
The controllable non-Hermiticity provides new insights and methods for exploring the unconventional quantum effects in superconducting quantum circuit.
arXiv Detail & Related papers (2024-04-04T11:58:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Generation of perfectly entangled two and three qubits states by
classical random interaction [0.0]
This study examines the possibility of finding perfect entanglers for a Hamiltonian.
In this study, we use a superconducting circuit that stands out from other quantum-computing devices.
Our scheme could contribute to quantum teleportation, quantum communication, and some other areas of quantum information processing.
arXiv Detail & Related papers (2022-12-06T16:27:58Z) - Realizing quantum speed limit in open system with a PT-symmetric
trapped-ion qubit [8.108489903565584]
We experimentally confirm the proposal in a single dissipative qubit system.
We find that the evolution time of its reversal operation increases with the increasing dissipation intensity.
arXiv Detail & Related papers (2022-06-02T09:02:47Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Fast quantum state transfer and entanglement for cavity-coupled many
qubits via dark pathways [1.8352113484137624]
Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing.
We propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways.
arXiv Detail & Related papers (2022-01-18T08:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.