論文の概要: 1 Modular Parallel Manipulator for Long-Term Soft Robotic Data Collection
- arxiv url: http://arxiv.org/abs/2409.03614v1
- Date: Thu, 5 Sep 2024 15:18:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:15:17.154545
- Title: 1 Modular Parallel Manipulator for Long-Term Soft Robotic Data Collection
- Title(参考訳): 長期ソフトロボットデータ収集のためのモジュール並列マニピュレータ
- Authors: Kiyn Chin, Carmel Majidi, Abhinav Gupta,
- Abstract要約: 本稿では,大規模データ収集に適した並列ロボット操作プラットフォームを提案する。
プラットフォームモジュールは、カスタマイズ可能なフィンガーを作動させるオフ・ザ・シェルフ電気モーターのペアで構成されている。
ベンチマーク2D操作タスクにおいて,ハードウェア上でのポリシー勾配強化学習に使用するプラットフォームの能力を検証する。
- 参考スコア(独自算出の注目度): 16.103025868841268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing long-term experimentation or large-scale data collection for machine learning in the field of soft robotics is challenging, due to the hardware robustness and experimental flexibility required. In this work, we propose a modular parallel robotic manipulation platform suitable for such large-scale data collection and compatible with various soft-robotic fabrication methods. Considering the computational and theoretical difficulty of replicating the high-fidelity, faster-than-real-time simulations that enable large-scale data collection in rigid robotic systems, a robust soft-robotic hardware platform becomes a high priority development task for the field. The platform's modules consist of a pair of off-the-shelf electrical motors which actuate a customizable finger consisting of a compliant parallel structure. The parallel mechanism of the finger can be as simple as a single 3D-printed urethane or molded silicone bulk structure, due to the motors being able to fully actuate a passive structure. This design flexibility allows experimentation with soft mechanism varied geometries, bulk properties and surface properties. Additionally, while the parallel mechanism does not require separate electronics or additional parts, these can be included, and it can be constructed using multi-functional soft materials to study compatible soft sensors and actuators in the learning process. In this work, we validate the platform's ability to be used for policy gradient reinforcement learning directly on hardware in a benchmark 2D manipulation task. We additionally demonstrate compatibility with multiple fingers and characterize the design constraints for compatible extensions.
- Abstract(参考訳): ハードウェアの堅牢性と実験的柔軟性が要求されるため、ソフトロボティクスの分野における機械学習の長期的な実験や大規模なデータ収集は困難である。
本研究では,このような大規模データ収集に適した並列ロボット操作プラットフォームを提案する。
剛体ロボットシステムにおける大規模データ収集を可能にする高忠実で高速なリアルタイムシミュレーションを再現することの計算的および理論的困難を考えると、堅牢なソフトロボティックハードウェアプラットフォームがこの分野の優先度の高い開発課題となる。
プラットホームのモジュールは、一対のオフ・ザ・シェルフ電気モーターで構成されており、これに準拠する平行構造からなるカスタマイズ可能な指を作動させる。
指の平行機構は、3Dプリントされたウレタンやシリコーンのバルク構造のようにシンプルで、モーターが受動的構造を完全に活性化できるためである。
この設計の柔軟性は、柔らかい機構で様々な測地、バルク特性、表面特性を実験することができる。
さらに、並列機構は別個の電子部品や追加部品を必要としないが、これらを組み込むことができ、多機能軟質材料を用いて、学習過程において互換性のあるソフトセンサーやアクチュエータを研究することができる。
本研究では,ベンチマーク2D操作タスクにおいて,ハードウェア上でのポリシ勾配強化学習に使用するプラットフォームの能力を検証する。
さらに、複数の指との互換性を実証し、互換性のある拡張の設計制約を特徴付ける。
関連論文リスト
- Learning to enhance multi-legged robot on rugged landscapes [7.956679144631909]
多足ロボットは、頑丈な風景をナビゲートするための有望なソリューションを提供する。
近年の研究では、線形制御器が挑戦的な地形上で信頼性の高い移動性を確保することが示されている。
我々は,このロボットプラットフォームに適した MuJoCo ベースのシミュレータを開発し,シミュレーションを用いて強化学習に基づく制御フレームワークを開発する。
論文 参考訳(メタデータ) (2024-09-14T15:53:08Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Orbit: A Unified Simulation Framework for Interactive Robot Learning
Environments [38.23943905182543]
NVIDIA Isaac Simによるロボット学習のための統一的でモジュール化されたフレームワークOrbitを紹介する。
写真リアリスティックなシーンと高忠実度剛性で変形可能なボディシミュレーションを備えたロボット環境を構築するためのモジュラーデザインを提供する。
我々は,表現学習,強化学習,模倣学習,タスク・アンド・モーション・プランニングなど,さまざまな研究領域を支援することを目的としている。
論文 参考訳(メタデータ) (2023-01-10T20:19:17Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
レオロジー方程式は複雑な流体の内部応力と変形を関連づける。
データ駆動モデルは、高価な第一原理モデルに代わる、アクセス可能な代替手段を提供する。
複素流体の類似モデルの開発が遅れている。
論文 参考訳(メタデータ) (2022-10-10T04:35:31Z) - Differentiable Simulation of Soft Multi-body Systems [99.4302215142673]
我々は、Projective Dynamics内でトップダウン行列アセンブリアルゴリズムを開発する。
筋肉,関節トルク,空気圧管によって駆動される軟口蓋体に対して,異なる制御機構を導出する。
論文 参考訳(メタデータ) (2022-05-03T20:03:22Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
柔らかいアクチュエータは、緩やかな握りや器用な動きといったロボット作業に対して安全かつ適応的なアプローチを提供する。
このようなシステムを制御するための正確なモデルを作成することは、変形可能な物質の複雑な物理のために困難である。
本稿では,微分可能シミュレータと有限要素法の利点を組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-25T21:15:05Z) - Learning Material Parameters and Hydrodynamics of Soft Robotic Fish via
Differentiable Simulation [26.09104786491426]
本フレームワークは, 実ハードウェアにおける複合バイモルフ曲げ構造の動的挙動の高精度予測を可能にする。
我々は,ロボットの材料パラメータと流体力学を学習するための,実験的に検証された高速な最適化パイプラインを実証した。
我々は水中ソフトロボットの特定の応用に焦点をあてるが、我々のフレームワークは空気圧で作動するソフトメカニズムにも適用できる。
論文 参考訳(メタデータ) (2021-09-30T05:24:02Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
触覚シミュレーションのための粒子の弾性相互作用(EIP)を提案する。
EIPは、触覚センサを協調粒子群としてモデル化し、接触時の粒子の変形を制御するために弾性特性を適用した。
さらに,触覚データと視覚画像間の情報融合を可能にする触覚知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:49:59Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。