論文の概要: TRACE-CS: A Synergistic Approach to Explainable Course Scheduling Using LLMs and Logic
- arxiv url: http://arxiv.org/abs/2409.03671v2
- Date: Tue, 8 Oct 2024 14:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 23:11:54.847537
- Title: TRACE-CS: A Synergistic Approach to Explainable Course Scheduling Using LLMs and Logic
- Title(参考訳): TRACE-CS: LLMと論理を用いた説明可能な授業スケジューリングのための相乗的アプローチ
- Authors: Stylianos Loukas Vasileiou, William Yeoh,
- Abstract要約: TRACE-csはシンボリック推論と大規模言語モデル(LLM)を組み合わせた新しいハイブリッドシステムである。
- 参考スコア(独自算出の注目度): 4.2356833681644055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present TRACE-cs, a novel hybrid system that combines symbolic reasoning with large language models (LLMs) to address contrastive queries in scheduling problems. TRACE-cs leverages SAT solving techniques to encode scheduling constraints and generate explanations for user queries, while utilizing an LLM to process the user queries into logical clauses as well as refine the explanations generated by the symbolic solver to natural language sentences. By integrating these components, our approach demonstrates the potential of combining symbolic methods with LLMs to create explainable AI agents with correctness guarantees.
- Abstract(参考訳): 本稿では,シンボル推論と大言語モデル(LLM)を組み合わせた新しいハイブリッドシステムTRACE-csを提案する。
TRACE-csはSATソルバ技術を活用してスケジューリング制約を符号化し、ユーザクエリの説明を生成するとともに、LLMを使用してユーザクエリを論理句に処理し、シンボルソルバによって生成された説明を自然言語文に洗練する。
これらのコンポーネントを統合することで、LLMとシンボリックメソッドを組み合わせることで、説明可能なAIエージェントを正確性保証で作成する可能性を実証する。
関連論文リスト
- Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - Logical Consistency of Large Language Models in Fact-checking [6.286017217366497]
大規模言語モデル(LLM)は、様々な自然言語タスクを実行する上で大きな成功を収めている。
人間のようなテキストを生成する素晴らしい能力にもかかわらず、LLMは一貫性のない反応で悪名高い。
論文 参考訳(メタデータ) (2024-12-20T17:42:25Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
社会的関係推論は、友人、配偶者、同僚などの関係カテゴリを画像から識別することを目的としている。
まず、VFM(Vision Foundation Models)の知覚能力と、モジュラーフレームワーク内でのLLM(Large Language Models)の推論能力を組み合わせた、シンプルだが巧妙な名前のフレームワークを提示する。
論文 参考訳(メタデータ) (2024-10-28T18:10:26Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - HYSYNTH: Context-Free LLM Approximation for Guiding Program Synthesis [25.260063704712458]
大規模言語モデル(LLM)は、よく知らないDSLで完全に正しいプログラムを生成するのに失敗する。
これらの制約により、与えられたタスクに対する LLM 補完をタスク固有の文脈自由代用モデル学習に使用するハイブリッドアプローチを導入する。
このハイブリッドなアプローチを3つの領域で評価し、既存のプログラムシンセサイザーと同様に、無誘導探索とLCMからの直接サンプリングの両方より優れていることを示す。
論文 参考訳(メタデータ) (2024-05-24T18:45:51Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
大きな言語モデル(LLM)は、言語理解において強力な能力を示しており、この課題を解決するために使用することができる。
既存のメソッドは、当初、スキーマ固有の詳細を使わずにLLMを使用してロジックフォームのドラフトを生成することで、この課題を回避している。
そこで本研究では,LLMが文脈内学習を利用してスキーマを直接理解できる簡易なインコンテキスト理解(ICSU)手法を提案する。
論文 参考訳(メタデータ) (2023-10-22T04:19:17Z) - Logic-LM: Empowering Large Language Models with Symbolic Solvers for
Faithful Logical Reasoning [101.26814728062065]
大規模言語モデル(LLM)は人間のような推論能力を示しているが、それでも複雑な論理的問題に悩まされている。
本稿では,論理問題の解法を改善するために,LLMとシンボリックソルバを統合した新しいフレームワークであるLogic-LMを紹介する。
論文 参考訳(メタデータ) (2023-05-20T22:25:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。