論文の概要: Low Depth Phase Oracle Using a Parallel Piecewise Circuit
- arxiv url: http://arxiv.org/abs/2409.04587v1
- Date: Fri, 6 Sep 2024 19:57:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:42:30.219412
- Title: Low Depth Phase Oracle Using a Parallel Piecewise Circuit
- Title(参考訳): 並列回路を用いた低深さOracle
- Authors: Zhu Sun, Gregory Boyd, Zhenyu Cai, Hamza Jnane, Balint Koczor, Richard Meister, Romy Minko, Benjamin Pring, Simon C. Benjamin, Nikitas Stamatopoulos,
- Abstract要約: 位相 $exp(i f(x))$ を計算基底状態 $left| x right>$ に適用する重要なタスクについて検討する。
また、ターゲット qubit を$f(x)$ に依存する角度で回転させる密接な関連するタスクについても検討する。
- 参考スコア(独自算出の注目度): 3.629687485125086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the important task of applying a phase $exp(i f(x))$ to a computational basis state $\left| x \right>$. The closely related task of rotating a target qubit by an angle depending on $f(x)$ is also studied. Such operations are key in many quantum subroutines, and often the function $f$ can be well-approximated by a piecewise linear composition. Examples range from the application of diagonal Hamiltonian terms (such as the Coulomb interaction) in grid-based many-body simulation, to derivative pricing algorithms. Here we exploit a parallelisation of the piecewise approach so that all constituent elementary rotations are performed simultaneously, that is, we achieve a total rotation depth of one. Moreover, we explore the use of recursive catalyst 'towers' to implement these elementary rotations efficiently. Depending on the choice of implementation strategy, we find a depth as low as $O(log n + log S)$ for a register of $n$ qubits and a piecewise approximation of $S$ sections. In the limit of multiple repetitions of the oracle, each instance has an $O(S \cdot n)$ T-count.
- Abstract(参考訳): 位相 $exp(i f(x))$ を計算基底状態 $\left| x \right>$ に適用する重要なタスクについて検討する。
また、ターゲット qubit を$f(x)$ に依存する角度で回転させる密接な関連するタスクについても検討する。
このような演算は多くの量子サブルーチンにおいて鍵であり、しばしば関数 $f$ は断片的な線形合成によってうまく近似することができる。
例えば、グリッドベースの多体シミュレーションにおける対角的ハミルトン項(クーロン相互作用など)の応用から、微分価格アルゴリズムまで様々である。
ここでは,すべての基本回転を同時に行うために,片方向アプローチの並列化を利用して,全回転深度を1とする。
さらに, これらの基本回転を効率的に実装するために, 再帰触媒「塔」の使用について検討する。
実装戦略の選択により、$O(log n + log S)$のレジスタと$S$セクションの断片的な近似に対して、深さが$O(log n + log S)$と低いことが分かる。
オラクルの繰り返しの極限において、各インスタンスは$O(S \cdot n)$Tカウントを持つ。
関連論文リスト
- Multi-level quantum signal processing with applications to ground state preparation using fast-forwarded Hamiltonian evolution [0.8359711817610189]
大きなスペクトル半径を持つハミルトンの$H$の基底状態の合成は多くの領域で応用されている。
高速転送機能を利用するマルチレベル量子信号処理(QSP)ベースのアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-06-04T08:09:51Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
我々は、我々の分割と形式主義の征服を通じて、大きな$Lambda$の量子化よりも優れたスケーリングと量子化を得られることを示す。
また,マルチコントロールされたXゲート群を実装する新しい方法を含む,ゲート最適化のための新しいアルゴリズムおよび回路レベル技術も提供する。
論文 参考訳(メタデータ) (2023-06-19T23:20:30Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
任意の量子状態を作成するための新しい決定論的手法は、以前の方法よりも少ない量子資源を必要とすることを示す。
我々は、量子機械学習、ハミルトンシミュレーション、方程式の線形系を解くことなど、この能力が役立ついくつかのアプリケーションを強調した。
論文 参考訳(メタデータ) (2023-03-03T18:23:20Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
本稿では,BFG凸最適化(SCO: Reweighted Query (ReSQue) 推定ツールを提案する。
我々はSCOの並列およびプライベート設定における最先端の複雑さを実現するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-01T18:51:29Z) - DADAO: Decoupled Accelerated Decentralized Asynchronous Optimization [0.0]
DADAOは、L$-smooth と $mu$-strongly convex 関数の和を最小化する最初の分散化、高速化、非同期化、プライマリ化、一階述語アルゴリズムである。
我々のアルゴリズムは、$mathcalO(nsqrtchisqrtfracLmulog(frac1epsilon)$ localと$mathcalO(nsqrtchisqrtfracLmulog()のみを必要とすることを示す。
論文 参考訳(メタデータ) (2022-07-26T08:47:54Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - Complexity of zigzag sampling algorithm for strongly log-concave
distributions [6.336005544376984]
強いログ凹分布に対するジグザグサンプリングアルゴリズムの計算複雑性について検討する。
ジグザグサンプリングアルゴリズムは, 計算コストが$obiglに匹敵するchi-squareの発散において, $varepsilon$ 誤差を達成することを証明した。
論文 参考訳(メタデータ) (2020-12-21T03:10:21Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
我々は、過度に決定された場合と過度に決定された場合のスキュード線形系に対するハイブリッド量子古典アルゴリズムについて論じる。
我々の入力モデルは、線形系を定義する行列の列または行が多対数深さの量子回路によって与えられるようなものである。
本稿では,各次元における実時間多対数性を持つ分解線形系の特殊ケースに対するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-28T12:59:27Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Continuous Submodular Maximization: Beyond DR-Submodularity [48.04323002262095]
最初に、バニラ座標の昇華の単純な変種を証明し、Coordinate-Ascent+ と呼ぶ。
次にCoordinate-Ascent++を提案し、同じ回数のイテレーションを実行しながら(1-1/e-varepsilon)$-approximationを保証する。
Coordinate-Ascent++の各ラウンドの計算は容易に並列化でき、マシン当たりの計算コストは$O(n/sqrtvarepsilon+nlog n)$である。
論文 参考訳(メタデータ) (2020-06-21T06:57:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。