Simulating kaon mixing with Josephson phase qubits
- URL: http://arxiv.org/abs/2409.04902v1
- Date: Sat, 7 Sep 2024 20:13:39 GMT
- Title: Simulating kaon mixing with Josephson phase qubits
- Authors: Andrei Galiautdinov,
- Abstract summary: I describe how we can use this remarkable property of the phase qubits to further test the validity of the superposition principle in the macroscopic quantum regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting circuits with Josephson junctions distinguish themselves from other types of quantum computing architectures by having easily controllable metastable computational states (the so-called phase qubits) with a very large ratio of their respective lifetimes. In this pedagogical note I describe how we can use this remarkable property of the phase qubits to further test the validity of the superposition principle in the macroscopic quantum regime by simulating the kaon mixing mechanism of particle physics.
Related papers
- Towards quantum computing Feynman diagrams in hybrid qubit-oscillator devices [0.0]
We show that experiments in hybrid qubit-oscillator devices can be seen through the lens of functional calculus and path integrals.
This connection suggests an expansion of the characteristic function in terms of Feynman diagrams.
We discuss how these ideas can be generalized to finite temperatures via the Schwinger-Keldysh formalism.
arXiv Detail & Related papers (2024-11-07T19:17:00Z) - Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Revealing microcanonical phase diagrams of strongly correlated systems
via time-averaged classical shadows [0.0]
We propose a method to study microcanonical phases and phase transitions on a quantum computer from quantum dynamics.
We first show that this method, applied to ground state calculations on 100 qubit systems, discovers the geometric relationship between magnetization and field.
We then show that diffusion maps of TACS data from quantum dynamics simulations efficiently learn the phase-defining features and correctly identify the quantum critical region.
arXiv Detail & Related papers (2022-11-02T16:39:52Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.