Leveraging Object Priors for Point Tracking
- URL: http://arxiv.org/abs/2409.05786v1
- Date: Mon, 9 Sep 2024 16:48:42 GMT
- Title: Leveraging Object Priors for Point Tracking
- Authors: Bikram Boote, Anh Thai, Wenqi Jia, Ozgur Kara, Stefan Stojanov, James M. Rehg, Sangmin Lee,
- Abstract summary: Point tracking is a fundamental problem in computer vision with numerous applications in AR and robotics.
We propose a novel objectness regularization approach that guides points to be aware of object priors.
Our approach achieves state-of-the-art performance on three point tracking benchmarks.
- Score: 25.030407197192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point tracking is a fundamental problem in computer vision with numerous applications in AR and robotics. A common failure mode in long-term point tracking occurs when the predicted point leaves the object it belongs to and lands on the background or another object. We identify this as the failure to correctly capture objectness properties in learning to track. To address this limitation of prior work, we propose a novel objectness regularization approach that guides points to be aware of object priors by forcing them to stay inside the the boundaries of object instances. By capturing objectness cues at training time, we avoid the need to compute object masks during testing. In addition, we leverage contextual attention to enhance the feature representation for capturing objectness at the feature level more effectively. As a result, our approach achieves state-of-the-art performance on three point tracking benchmarks, and we further validate the effectiveness of our components via ablation studies. The source code is available at: https://github.com/RehgLab/tracking_objectness
Related papers
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - Object Preserving Siamese Network for Single Object Tracking on Point
Clouds [0.6165605009782557]
We propose an Object Preserving Siamese Network (OPSNet), which can significantly maintain object integrity and boost tracking performance.
First, the object highlighting module enhances the object-aware features and extracts discriminative features from template and search area.
Then, the object-preserved sampling selects object candidates to obtain object-preserved search area seeds and drop the background points that contribute less to tracking.
Finally, the object localization network precisely locates 3D BBoxes based on the object-preserved search area seeds.
arXiv Detail & Related papers (2023-01-28T02:21:31Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
Occlusion is one of the most significant challenges encountered by object detectors and trackers.
We propose a tracking-by-detection approach that builds upon the success of region based video object detectors.
Our approach achieves superior results on a dataset of furniture assembly videos collected from the internet.
arXiv Detail & Related papers (2021-06-20T22:29:46Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - e-TLD: Event-based Framework for Dynamic Object Tracking [23.026432675020683]
This paper presents a long-term object tracking framework with a moving event camera under general tracking conditions.
The framework uses a discriminative representation for the object with online learning, and detects and re-tracks the object when it comes back into the field-of-view.
arXiv Detail & Related papers (2020-09-02T07:08:56Z) - Blending of Learning-based Tracking and Object Detection for Monocular
Camera-based Target Following [2.578242050187029]
We present a real-time approach which fuses a generic target tracker and object detection module with a target re-identification module.
Our work focuses on improving the performance of Convolutional Recurrent Neural Network-based object trackers in cases where the object of interest belongs to the category of emphfamiliar objects.
arXiv Detail & Related papers (2020-08-21T18:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.