論文の概要: Predicting Critical Heat Flux with Uncertainty Quantification and Domain Generalization Using Conditional Variational Autoencoders and Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2409.05790v2
- Date: Mon, 24 Feb 2025 17:01:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.486831
- Title: Predicting Critical Heat Flux with Uncertainty Quantification and Domain Generalization Using Conditional Variational Autoencoders and Deep Neural Networks
- Title(参考訳): 条件付き変分オートエンコーダとディープニューラルネットワークを用いた不確かさの定量化と領域一般化による臨界熱流束の予測
- Authors: Farah Alsafadi, Aidan Furlong, Xu Wu,
- Abstract要約: 我々は,2006年のGroeneveldルックアップテーブルで用いられる臨界熱流束データを拡張する条件付き変分オートエンコーダ(CVAE)を開発した。
従来の手法と比較するため、同じデータセット上で微調整深層ニューラルネットワーク(DNN)回帰モデルを評価した。
- 参考スコア(独自算出の注目度): 2.517043342442487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models (DGMs) can generate synthetic data samples that closely resemble the original dataset, addressing data scarcity. In this work, we developed a conditional variational autoencoder (CVAE) to augment critical heat flux (CHF) data used for the 2006 Groeneveld lookup table. To compare with traditional methods, a fine-tuned deep neural network (DNN) regression model was evaluated on the same dataset. Both models achieved small mean absolute relative errors, with the CVAE showing more favorable results. Uncertainty quantification (UQ) was performed using repeated CVAE sampling and DNN ensembling. The DNN ensemble improved performance over the baseline, while the CVAE maintained consistent results with less variability and higher confidence. Both models achieved small errors inside and outside the training domain, with slightly larger errors outside. Overall, the CVAE performed better than the DNN in predicting CHF and exhibited better uncertainty behavior.
- Abstract(参考訳): 深層生成モデル(DGM)は、元のデータセットによく似た合成データサンプルを生成し、データの不足に対処する。
本研究では,2006年のGroeneveldルックアップテーブルで用いられる臨界熱流束(CHF)データを増大させる条件変分オートエンコーダ(CVAE)を開発した。
従来の手法と比較するため、同じデータセット上で微調整深層ニューラルネットワーク(DNN)回帰モデルを評価した。
両モデルとも平均的な相対誤差は小さく、CVAEはより良好な結果を示した。
CVAEサンプリングとDNNアンサンブルを用いて不確かさ定量化(UQ)を行った。
DNNアンサンブルはベースラインよりも性能を向上し、CVAEは安定性を低下させ、信頼性を高めた。
どちらのモデルもトレーニング領域内外の小さなエラーを発生し、外部のエラーはわずかに大きい。
CVAEは,CHF予測においてDNNよりも優れ,不確実性も良好であった。
関連論文リスト
- Strengthening Anomaly Awareness [0.0]
我々は、教師なし異常検出の強化を目的とした、異常認識フレームワークの洗練されたバージョンを提案する。
本稿では,2段階のトレーニング戦略を通じて,変分オートエンコーダ(VAE)の最小限の監視を導入する。
論文 参考訳(メタデータ) (2025-04-15T16:52:22Z) - Interpretable Deep Regression Models with Interval-Censored Failure Time Data [1.2993568435938014]
間隔制限付きデータの深層学習手法は、まだ探索が過小評価されており、特定のデータタイプやモデルに限られている。
本研究は、部分線形変換モデルの幅広いクラスを持つ区間知覚データに対する一般的な回帰フレームワークを提案する。
我々の手法をアルツハイマー病神経イメージングイニシアチブデータセットに適用すると、従来のアプローチと比較して新しい洞察と予測性能が向上する。
論文 参考訳(メタデータ) (2025-03-25T15:27:32Z) - Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
本研究では,非局所的同化代理モデルとその構造モデル誤差を学習するための新しい枠組みを提案する。
このフレームワークは、長期シミュレーションにおける均質化材料応答予測のための離散性適応不確実性定量化を提供する。
論文 参考訳(メタデータ) (2024-10-27T04:17:27Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
生成誤差補正モデルは、トレーニング中に発生する特定の種類のエラーを超えて一般化することが困難であることを示す。
DARAGは、ドメイン内(ID)およびOODシナリオにおけるASRのためのGCCを改善するために設計された新しいアプローチである。
私たちのアプローチはシンプルでスケーラブルで、ドメインと言語に依存しません。
論文 参考訳(メタデータ) (2024-10-17T04:00:29Z) - A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
MoEフレームワークは揮発性株のRNNと安定株の線形モデルを組み合わせて、ゲーティングネットワークを介して各モデルの重量を動的に調整する。
その結果,MoE法は様々な変動性プロファイルの予測精度を著しく向上させることがわかった。
MoEモデルの適応性は個々のモデルよりも優れており、Mean Squared Error(MSE)やMean Absolute Error(MAE)などのエラーを減らすことができる。
論文 参考訳(メタデータ) (2024-10-04T14:36:21Z) - Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 [2.082445711353476]
本研究では、自己エンコーダとデータ拡張技術により強化されたハイブリッドディープ畳み込みニューラルネットワーク(DCNN)モデルの開発について検討する。
オリジナルの入力機能を3つの異なるオートエンコーダ構成で拡張することにより、モデルの予測能力は大幅に改善された。
論文 参考訳(メタデータ) (2024-08-26T20:45:07Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
論文 参考訳(メタデータ) (2024-02-28T22:19:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Missing Features Reconstruction Using a Wasserstein Generative
Adversarial Imputation Network [0.0]
特徴再構成における生成モデルと非生成モデルの使用について実験的に検討した。
任意条件付き生成オートエンコーダ(VAEAC)とGAIN(Generative Adversarial Imputation Network)を生成モデルの代表として研究した。
WGAIN を GAIN のワッサースタイン修飾法として導入し,欠損度が 30% 以下である場合に最も優れた計算モデルであることが判明した。
論文 参考訳(メタデータ) (2020-06-21T11:53:55Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。