論文の概要: Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
- arxiv url: http://arxiv.org/abs/2409.06267v1
- Date: Tue, 10 Sep 2024 07:12:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:50:07.706796
- Title: Mahalanobis k-NN: A Statistical Lens for Robust Point-Cloud Registrations
- Title(参考訳): Mahalanobis k-NN:ロバストポイントクラウド登録のための統計レンズ
- Authors: Tejas Anvekar, Shivanand Venkanna Sheshappanavar,
- Abstract要約: マハラノビスk-NN(Mahalanobis k-NN)は、学習ベースのポイントクラウド登録における特徴マッチングの課題に対処するために設計された統計レンズである。
本手法は任意の局所グラフベースの点雲解析手法にシームレスに統合できる。
私たちは、ポイントクラウドの登録によって得られた機能が本質的に差別的能力を持つことができることを、初めて確立しました。
- 参考スコア(独自算出の注目度): 6.5252909392002785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we discuss Mahalanobis k-NN: a statistical lens designed to address the challenges of feature matching in learning-based point cloud registration when confronted with an arbitrary density of point clouds, either in the source or target point cloud. We tackle this by adopting Mahalanobis k-NN's inherent property to capture the distribution of the local neighborhood and surficial geometry. Our method can be seamlessly integrated into any local-graph-based point cloud analysis method. In this paper, we focus on two distinct methodologies: Deep Closest Point (DCP) and Deep Universal Manifold Embedding (DeepUME). Our extensive benchmarking on the ModelNet40 and Faust datasets highlights the efficacy of the proposed method in point cloud registration tasks. Moreover, we establish for the first time that the features acquired through point cloud registration inherently can possess discriminative capabilities. This is evident by a substantial improvement of about 20\% in the average accuracy observed in the point cloud few-shot classification task benchmarked on ModelNet40 and ScanObjectNN. The code is publicly available at https://github.com/TejasAnvekar/Mahalanobis-k-NN
- Abstract(参考訳): 本稿では,Mahalanobis k-NNについて述べる。これは,学習ベースポイントクラウド登録における特徴マッチングの課題に対処するために設計された統計レンズである。
本稿では,マハラノビスk-NNの固有特性を用いて局所近傍の分布と表面形状を捉える。
本手法は任意の局所グラフベースの点雲解析手法にシームレスに統合できる。
本稿では,Deep Closest Point (DCP) とDeep Universal Manifold Embedding (DeepUME) の2つの異なる手法に焦点を当てる。
ModelNet40とFaustデータセットの広範なベンチマークでは、ポイントクラウド登録タスクにおける提案手法の有効性を強調した。
さらに、ポイントクラウドの登録によって得られた特徴が本質的に識別能力を持つことができることを初めて確立した。
これは、ModelNet40とScanObjectNNでベンチマークされたポイントクラウドのいくつかのショット分類タスクで観測された平均精度が約20倍に改善されたことで明らかである。
コードはhttps://github.com/TejasAnvekar/Mahalanobis-k-NNで公開されている。
関連論文リスト
- Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
我々は、パッチレベルでポイントクラウドを混合し、混合ポイントクラウドのコンテンツベースターゲットを生成するPointPatchMixを提案する。
パッチスコアリングモジュールは、事前学習した教師モデルから、コンテンツに基づく重要度スコアに基づいて目標を割り当てる。
Point-MAE をベースラインとして,ScanObjectNN では86.3%,ModelNet40 では94.1% の精度で,従来の手法をかなり上回りました。
論文 参考訳(メタデータ) (2023-03-12T14:49:42Z) - PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning [72.07350827773442]
我々は,新しいポイントカット・アンド・ミクス機構を用いて,オープンセットのクラウド学習を解決することを提案する。
トレーニング段階では,Unknown-Point Simulatorを用いてアウト・オブ・ディストリビューションデータをシミュレートする。
Unknown-Point Estimatorモジュールは、既知のデータを識別するために、ポイントクラウドの機能コンテキストを活用することを学ぶ。
論文 参考訳(メタデータ) (2022-12-05T03:53:51Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
我々は,クラウド登録をポイントとする深層生成ニューラルネットワークを探索し,新しいデータ駆動型登録アルゴリズムを提案する。
ModelNet40と7Sceneのデータセットを用いた実験により、提案アルゴリズムが最先端の精度と効率を達成することを示した。
論文 参考訳(メタデータ) (2021-11-23T10:52:09Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3Dポイントのクラウド登録は、2つのポイントのクラウド間の厳密な変換を見つけるのが難しいため、依然として非常に難しいトピックである。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-11-30T06:55:05Z) - Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification [35.88116404702807]
MRFGATアーキテクチャはModelNet10とModelNet40データセットでテストされている。
その結果,形状分類作業における最先端性能が得られた。
論文 参考訳(メタデータ) (2020-09-28T13:01:28Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
この研究は、ディープニューラルネットワークを用いたポイントクラウド登録の問題に対処する。
重なり合うデータ内容を持つ2つの点雲間のアライメントを予測する手法を提案する。
提案手法は,最先端の精度と比較手法の最低実行時間を実現する。
論文 参考訳(メタデータ) (2020-07-22T08:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。