Symmetry Breaking in Neural Network Optimization: Insights from Input Dimension Expansion
- URL: http://arxiv.org/abs/2409.06402v2
- Date: Thu, 12 Sep 2024 10:47:35 GMT
- Title: Symmetry Breaking in Neural Network Optimization: Insights from Input Dimension Expansion
- Authors: Jun-Jie Zhang, Nan Cheng, Fu-Peng Li, Xiu-Cheng Wang, Jian-Nan Chen, Long-Gang Pang, Deyu Meng,
- Abstract summary: We show that a simple input expansion can significantly improve network performance across various tasks.
By quantifying the degree of symmetry breaking, our work offers a practical technique for performance enhancement and a metric to guide network design.
- Score: 41.170854872233534
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Understanding the mechanisms behind neural network optimization is crucial for improving network design and performance. While various optimization techniques have been developed, a comprehensive understanding of the underlying principles that govern these techniques remains elusive. Specifically, the role of symmetry breaking, a fundamental concept in physics, has not been fully explored in neural network optimization. This gap in knowledge limits our ability to design networks that are both efficient and effective. Here, we propose the symmetry breaking hypothesis to elucidate the significance of symmetry breaking in enhancing neural network optimization. We demonstrate that a simple input expansion can significantly improve network performance across various tasks, and we show that this improvement can be attributed to the underlying symmetry breaking mechanism. We further develop a metric to quantify the degree of symmetry breaking in neural networks, providing a practical approach to evaluate and guide network design. Our findings confirm that symmetry breaking is a fundamental principle that underpins various optimization techniques, including dropout, batch normalization, and equivariance. By quantifying the degree of symmetry breaking, our work offers a practical technique for performance enhancement and a metric to guide network design without the need for complete datasets and extensive training processes.
Related papers
- Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
arXiv Detail & Related papers (2024-09-25T09:27:17Z) - Component-based Sketching for Deep ReLU Nets [55.404661149594375]
We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
arXiv Detail & Related papers (2024-09-21T15:30:43Z) - The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
We investigate the impact of neural parameter symmetries by introducing new neural network architectures.
We develop two methods, with some provable guarantees, of modifying standard neural networks to reduce parameter space symmetries.
Our experiments reveal several interesting observations on the empirical impact of parameter symmetries.
arXiv Detail & Related papers (2024-05-30T16:32:31Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - SySMOL: Co-designing Algorithms and Hardware for Neural Networks with Heterogeneous Precisions [20.241671088121144]
Recent quantization techniques have enabled heterogeneous precisions at very fine granularity.
These networks require additional hardware to decode the precision settings for individual variables, align the variables, and provide fine-grained mixed-precision compute capabilities.
We present an end-to-end co-design approach to efficiently execute networks with fine-grained heterogeneous precisions.
arXiv Detail & Related papers (2023-11-23T17:20:09Z) - Power-Enhanced Residual Network for Function Approximation and Physics-Informed Inverse Problems [0.0]
This paper introduces a novel neural network structure called the Power-Enhancing residual network.
It improves the network's capabilities for both smooth and non-smooth functions approximation in 2D and 3D settings.
Results emphasize the exceptional accuracy of the proposed Power-Enhancing residual network, particularly for non-smooth functions.
arXiv Detail & Related papers (2023-10-24T10:01:15Z) - No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
Paths [12.068608358926317]
First-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks.
We focus on the fundamental geometric properties of sampled quantities of optimization on two key paths.
Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training.
arXiv Detail & Related papers (2023-06-20T22:10:40Z) - Neural Network Training with Asymmetric Crosspoint Elements [1.0773924713784704]
asymmetric conductance modulation of practical resistive devices critically degrades the classification of networks trained with conventional algorithms.
Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Hamiltonian Descent.
We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead.
arXiv Detail & Related papers (2022-01-31T17:41:36Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.