Imaginary-time Mpemba effect in quantum many-body systems
- URL: http://arxiv.org/abs/2409.06547v1
- Date: Tue, 10 Sep 2024 14:23:13 GMT
- Title: Imaginary-time Mpemba effect in quantum many-body systems
- Authors: Wei-Xuan Chang, Shuai Yin, Shi-Xin Zhang, Zi-Xiang Li,
- Abstract summary: We report a novel phenomenon of the Mpemba effect in the imaginary-time relaxation dynamics in quantum many-body systems.
The emergence of ITME is intimately associated with the low-energy excitations in quantum many-body systems.
- Score: 2.54990557236581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various exotic phenomena emerge in non-equilibrium quantum many-body systems. The Mpemba effect, denoting the situation where a hot system freezes faster than the colder one, is a counterintuitive non-equilibrium phenomenon that has attracted enduring interest for more than half a century. In this Letter, we report a novel phenomenon of the Mpemba effect in the imaginary-time relaxation dynamics in quantum many-body systems, dubbed as imaginary-time Mpemba effect (ITME). Through numerically exact quantum Monte-Carlo (QMC) simulation, we unambiguously demonstrate that in different classes of interacting quantum models, the initial states with higher energy are relaxed faster than lower-energy initial states in the process of imaginary-time relaxation. The emergence of ITME is intimately associated with the low-energy excitations in quantum many-body systems. More crucially, since imaginary-time dynamics is broadly applied in numerical simulation on the quantum many-body ground states, the discovery of ITME potentially provides a new pathway to expedite the quantum many-body computation, particularly for QMC involving the sign problem.
Related papers
- Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium [0.0]
We review the basic concepts of superconducting quantum simulation and their recent experimental progress.
We discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
arXiv Detail & Related papers (2024-10-16T08:27:01Z) - Quantum Mpemba effects in many-body localization systems [3.625262223613696]
We show that the symmetry can still be fully restored in many-body localization phases without approaching thermal equilibrium.
We also provide a theoretical analysis of symmetry restoration and quantum Mpemba effects with the help of the effective model for many-body localization.
arXiv Detail & Related papers (2024-08-14T18:00:47Z) - Non-Markovian Quantum Mpemba effect [0.0]
We study the Mpemba effect, where a far-from-equilibrium state may relax faster than a state closer to equilibrium.
Our work provides new insights into the rich physics underlying accelerated relaxation in quantum systems.
arXiv Detail & Related papers (2024-02-08T15:41:02Z) - Observation of quantum strong Mpemba effect [0.568742895734281]
We report the first experiment, as far as we know,about the strong Mpemba effect in a single trapped ion system.
Our work provides an efficient strategy to exponentially accelerate relaxations of quantum system to their stationary state.
It could open up the door to engineer a wide range of dissipative quantum systems.
arXiv Detail & Related papers (2024-01-29T08:25:34Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Universal scaling at a pre-thermal dark state [0.0]
We discuss the universal dynamical scaling after a sudden quench of the non-Hermitian $O(N)$ model Hamiltonian.
While universality is generally spoiled by non-Hermiticity, we find that for a given set of internal parameters short-time scaling behaviour is restored with an initial slip profoundly different from that of closed quantum systems.
arXiv Detail & Related papers (2021-12-28T15:11:45Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.